
CRYPTOGRAPHY
(lecture 9)

Literature:
“A Graduate Course in Applied Cryptography” (ch 11.6.1,11.6.2)

“Lecture Notes on Cryptography” (ch 12.3.1)

“Lecture Notes on Introduction to Cryptography” by V. Goyal (ch10, 10.2.1, 10.3.1, 13.4)
“Lecture Notes on Cryptographic Protocols” by Schoenmakers (ch 6.1.1,6.2.2, all ch 6)

“Cryptography Made Simple” by N. Smart: (Part 4 ch 20)

“Efficient Secure Two-Party Protocols” by C. Hazay & H. Lindell (ch7.0-7.2.1, DDH-based OT)

https://toc.cryptobook.us/
https://cseweb.ucsd.edu/~mihir/papers/gb.pdf
https://www.cs.cmu.edu/~goyal/15356/lecture_notes.pdf
https://www.win.tue.nl/~berry/CryptographicProtocols/LectureNotes.pdf

Announcements

2

Task 2 What kind of object does g generate? Describe it in your own words but using
terminology introduced in the lectures (e.g., permutation, group, subgroup, closed under
multiplication...). Include your answer and motivation in the report.pdf file. (Optional:
Can you say something about Z⇤

p \ hgi?)

Compute the value Q obtained by juxtaposing the first and the second decimal digits in rnd, taking it
modulo 4, and adding 1 (so the final value is in the set {1, 2, 3, 4}). (Example: sha256(BobJones) ==
d7609f6bce0523c1d94bb3.... so q = 76, and Q = (q mod 4) + 1 = 1)

Task 3 Address question number Q from the list below. Include your detailed explanations
in report.pdf

Question 1 Let p1 and p2 be two distinct prime numbers with p2 < p1. Prove that if g 2 Z⇤
p1

has
the property that gp2 = 1, then the set S = {gi|0  i < p2} is closed under multiplication (i.e.,
S is a subgroup of Z⇤

p1
)

Question 2 Give a description of the smallest, non-trivial[†] multiplicative subgroup contained in Z⇤
p,

for the same p as in task 1. What is its cardinality? How can you conclude that it is indeed the
smallest possible subgroup? ([†]We exclude the trivial answer h1i.)

Question 3 Let p, g be the as in Task 1. Consider the value a = g
p�1
2 in Z⇤

p. Show that a is a square
root of 1. How many such a do exist in Z⇤

p?

Question 4 Let h be a generator of Z⇤
p, define the Diffie-Hellman operator ?DH : Z⇤

p ⇥ Z⇤
p ! Z⇤

p

as a ?DH b = alogh(b). Show that for any a, b 2 hhi the operator ?DH is commutative, i.e.,
a ?DH b = b ?DH a. What does this property imply for cryptography?

In the remainder of this assignment you will play the role of an active adversary who intercepts
and modifies an encrypted message sent by Alice to Bob. For learning sake, you will first work in Zp,
for the same p as in Task 1. Since p is small, you will be able to launch a dictionary attack; however,
since p is not too small, this task will hopefully help you gain insight on how much harder such attack
becomes as p grows to be a 512-bit long prime.

You intercept Alice’s message (c0, c1) where c0 = q mod p, computed using the same q as in Task
3, and c1 is obtained by juxtaposing the third and the fourth decimal digits in rnd (and taking it
modulo p). In case either c0 = 0 mod p or c1 = 0 mod p, ignore the standard instructions and use
(c0 = 352 mod p, c1 = 250 mod p) instead.
(Example: sha256(BobJones) = rnd = d 76 09 f6bce052... so c0 = 76 mod 23 and c1 = 09 mod 23)
You quickly realize Alice and Bob are using the ElGamal cryptosystem4. In addition, you know Bob’s
public key pkB = 125 mod p (because it is a public information!) and the fact that they are using
the generator h = 10.

Task 4 This tasks depends on the nature of your g from Task 1:
In case g is a generator of Z⇤

p: Use the table you produced for Task 1 (and possibly the
fact that logh(gx) = x(logg(h))

�1 mod p) to decrypt Alice’s message contained in (c0, c1).
Write the message m in line 4 in the values.txt file.
In case g is not a generator of Z⇤

p (i.e., it only generates a proper subgorup): Without
decrypting (c0, c1), modify the ciphertext so that the value it encrypts gets multiplied by
two, i.e., if (c0, c1) is an encryption of m, your ciphertext (c⇤0, c

⇤
1) is an encryption of m · 2.

Write the modified ciphertext (c⇤0, c
⇤
1) in line 4 in the values.txt file.

Task 5 (optional) To generate reproducible randomness this assignment silently relies on
some properties of sha256, can you identify one property and what would happen in the
unlikely event of this property not being met by one or two input strings?

Task 6 (optional) How can we be sure that h = 10 is a generator for all possible primes
p used in this assignment?

4https://en.wikipedia.org/wiki/ElGamal_encryption

2

Introduction to Multi-Party Computation
• What Is MPC

• Terminology

• An Intuition of Security

Secret Sharing Scheme
• Motivation

• Definition

• A Simple Construction

• Shamir Secret Sharing Scheme

• An Application: Threshold Cryptography

Commitment Schemes Interlude
• Pedersen Commitment - Proof

• A Security Note - Proof

Module 3: Agenda

Zero-Knowledge Proofs
Σ-Protocols
Generic 2 Party Computation
Garbled Circuits

Back to Sharing
• Verifiable Secret Sharing (Pedersen)

Oblivious Transfer
• Example

• DDH-Based Construction

3

HA3

HA3

HA3
HA3

In Module 1 and 2

4

𝒜

𝒜

In Module 3

SECURE MULTI-PARTY COMPUTATION

Aim: realise security for
advanced settings, often relying
on basic tools (primitives) from
Module 1 and 2.

What Is Multi-Party Computation?

5

The aim of secure multiparty computations is to enable a number of distinct,
yet connected, computing devices (or parties) to carry out a joint computation
of some function in a secure manner.

corrupted

party

Key Agreement

Blind Signatures

. . .

Untreatable eCash

Private Set Intersection

Private Information Retrieval

. . .

Mental Poker

(Socialist) Millionaire Problem

. . .

Secret Sharing

Threshold Cryptography

 “everything is MPC”

Security Requirements in MPC

6

Privacy: No party should learn anything more than its prescribed output.

๏ the only information that should be learned about other parties’ inputs is what
can be inferred from the output itself.

Example: An auction where the only bid revealed is the one of the highest bidder.
Inferred information: all other bids were lower than the winning bid. However, this
should be the only information revealed about the losing bids.

Correctness: Each party is guaranteed that the output that it receives is correct.

Guaranteed Output Delivery (GOD): Corrupted parties should not be able to
prevent honest parties from receiving their output.

Fairness: Corrupted parties should receive their outputs if and only if the honest
parties also receive their outputs.

𝒜
The Adversary’s Power

7

Corruption Strategies: when or how parties come under the “control” of the adversary

๏ Static: is given a fixed set of parties whom it controls. Honest parties remain
honest throughout and corrupted parties remain corrupted.

๏ Adaptive: can corrupt parties during the computation. The choice of whom to
corrupt, and when, can be arbitrarily decided by the adversary and may depend on
what it has seen throughout the execution. Once a party is corrupted, it remains
corrupted from that point on.

๏ Proactive/Dynamic: can corrupt parties for a certain period of time only. Not only
honest parties may become corrupted throughout the computation, but also corrupted
parties may also become honest.

𝒜

𝒜

𝒜

controls a subset of
parties (corrupted)

𝒜
The Adversary’s Power

8

controls a subset of
parties (corrupted)

Adversarial Behaviour: the actions that corrupted parties are allowed to take.

๏Semi-honest: corrupted parties correctly follow the protocol specification.
However, obtains the internal state of all the corrupted parties (including the
transcript of all the messages received), and attempts to use this to learn
information that should remain private.

๏ Malicious: corrupted parties can arbitrarily deviate from the protocol specification,
following ’s instructions.

๏ Covert: may behave maliciously but if it does so, it will be caught cheating by
the honest parties, with some given probability.

𝒜

𝒜

𝒜
Covert = Rational

Semi-Honest = Honest-but-Curious = Passive

Malicious = Active

𝒜
The Adversary’s Power

9

controls a subset of
parties (corrupted)

(Computational) Complexity:

๏ Polynomial time: is allowed to run in (probabilistic) polynomial time
(and sometimes, expected polynomial time).

๏ Computationally unbounded: has no computational limits whatsoever,
is not bound to any complexity class and is not assumed to run in
polynomial time.

𝒜

𝒜

Security Models in MPC: computational vs. information-theoretic (unconditional)

The Core Idea of Secure Multi-Party Computation (MPC)

10

ideal functionality

IDEAL WORLD REAL WORLD

MPC protocol

MPC protocols allow multiple parties to jointly compute a function over private
inputs (the input of each party remains unknown to the other parties)

Introduction to Multi-Party Computation
• What Is MPC

• Terminology

• An Intuition of Security

Secret Sharing Scheme
• Motivation

• Definition

• A Simple Construction

• Shamir Secret Sharing Scheme

• An Application: Threshold Cryptography

Commitment Schemes Interlude
• Pedersen Commitment - Proof

• A Security Note - Proof

Module 3: Agenda

Zero-Knowledge Proofs
Σ-Protocols
Generic 2 Party Computation
Garbled Circuits

Back to Sharing
• Verifiable Secret Sharing (Pedersen)

Oblivious Transfer
• Example

• DDH-Based Construction

11

Sharing a Secret…Why?

12

https://portswigger.net/daily-swig/dozens-of-cryptography-libraries-vulnerable-to-private-key-theft
https://www.businessinsider.in/investment/news/biggest-crypto-hacks-of-2021-over-4-billion-stolen/slidelist/88560280.cms

Secret Sharing

13

How To Formalise This Notion?

14

Definition: Secret Sharing Scheme

An -secret sharing scheme is a method by which a dealer distributes
shares of a secret value to a set of parties so that:

1) correctness: any set of parties can reconstruct (together)

2) privacy: no single party alone learns anything about
3) -security: any subset of less than parties cannot compute

(n, t)
s n ≥ 2

t− t s
s

(t − 1) t s

To define a secret sharing scheme it suffices to explain how two algorithms work:
 (run by the dealer) and run by the share holders (parties)Distribute Reconstruct

A Simple Construction: Secret Sharing(n out of n)

15

A trivial realisation

x1, …, xn−1 ← $ − ℤN

xn = s − (x1 + … + xn−1) mod N

f(x1, …, xn) = (x1 + … + xn) mod N

Functionality : Given a secret value , generate values s.t.
 for some public function

s ∈ ℤN n x1, …, xn
s = f(x1, …, xn) f(⋅)

1) correctness: any set of parties can reconstruct (together)

2) privacy: no single party alone learns anything about
3) -security: any subset of less than parties cannot compute

t− t (= n) s
s

(t − 1) n s

A trivial realisation

f1,2(x1, x2) = y1 + y2 + y3 mod N

A More Interesting Construction: 2 Out of 3 Secret Sharing

16

y1, y2 ← $ − ℤN

x1 = {y2, y3}, x2 = {y1, y3}, x3 = {y1, y2}

fix t = 2, n = 3

y3 = s − y1 − y2 mod N

👍 any set of parties can
reconstruct the secret

👍 one party alone cannot retrieve

👎 (not optimal) to secret share ONE
value in each party needs to store
TWO values in

t = 2
s

s

ℤN
ℤN

Functionality : Given a secret value , generate values s.t.
for any subset with cardinality it holds that

 for some public function

s ∈ ℤN n x1, …, xn
T ⊆ {1,…, n} |T | = t

s = fT(xi : i ∈ T) fT(⋅)

🧐 can we do better than this?

Shamir Secret Sharing Scheme (t out of n)

17

let s = 1 be the secret value

construct a random polynomial
of degree passing by the
point (0, s)

t − 1

compute the share for party Pi
as si = f(i) mod p

for i ∈ {1, 2, 3, .. n }

👀 the shares si look
completely random

but if you interpolate
shares, there exists only one
polynomial of degree
that passes by all of them.

t = 4

3 = t − 1

the polynomial is exactly f, and f (0) = s is exactly the secret
(reconstructed by interpolation from the shares)

-1 -0,5 0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5

-10

-7,5

-5

-2,5

2,5

5

7,5

-1 -0,5 0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5

-10

-7,5

-5

-2,5

2,5

5

7,5

s

-1 -0,5 0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5

-10

-7,5

-5

-2,5

2,5

5

7,5

s

f(1) = s1

f(2) = s2
f(3) = s3

f(4) = s4
-1 -0,5 0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5

-10

-7,5

-5

-2,5

2,5

5

7,5

f(1) = s1

f(2) = s2
f(3) = s3

f(4) = s4
-1 -0,5 0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5

-10

-7,5

-5

-2,5

2,5

5

7,5

s

Shamir Secret Sharing Scheme (t out of n)

18

How to reconstruct s from the shares?

let there be t parties P1 P2 … Pt

each holding its share si = f(i) mod p

the set of parties can reconstruct the secret s by computing:

where

s = s1δ1 + s2δ2 + … + stδt

δi = ∏
j∈{1,…,t}∖{i}

j
j − i

mod p this expression

is actually a

number!

 e.g. (for P1 ,P2 ,P3) 𝛿1 = 3, 𝛿2 = -3, 𝛿3 = -1

 e.g. (for P1 , P4) 𝛿1 = 4/3, 𝛿4 = -1/3 (inverses to be computed mod p)

Lagrange coefficients

Shamir Secret Sharing - Generic Reconstruction
Lagrange Interpolation

For any polynomial of degree ,  
given distinct points it holds that:

where

f(x) ∈ ℤp[x] d = (t − 1) > 0
t = d + 1 I = {i1, i2, …, it} ⊆ ℤp

f(x) = f(i1)δi1(x) + f(i2)δi2(x) + … + f(it)δit(x) ∈ ℤp[x]

δi(x) = ∏
j∈I∖{i}

x − j
i − j

mod p

19

👀 the polynomials only depend on and not on

👀 the polynomials exist for every and every set of of cardinality

👀 setting we get (correctness)

δi(x) i, j ∈ I f(x)
δi(x) i I ⊆ ℤp t

x = 0 s = f(0) = f(i1)δi1(0) + f(i2)δi2(0) + … + f(it)δit(0) mod p

🧐 why does this work?

the are called Lagrange basis polynomials,
sometimes the set I is specified as

δi(x)
δI

i (x)

[polynomial identity: and coincide on points]f(x) ∑
i∈I

f(i)δI
i (x) d + 1

20

Shamir Secret Sharing Scheme (Formal)

: to secret-share the value among parties, the
dealer does the following:

๏ sample random values

๏ construct the polynomial

๏ compute the shares by evaluating on distinct points: for

๏ send the share to party (via a secure channel)

: to reconstruct the secret given distinct shares do:

๏ compute the Lagrange coefficients for the set :

๏ Recover the secret

(n, t)

Distribute(q, n, t, s) (n, t) s ∈ ℤp n

t a1, …, at ← $ℤq
f(x) = s + a1x + a2x2 + ⋯ + atxt ∈ ℤq[x]

n f(⋅) n si = f(i)
i ∈ {1,2,…, n}

si Pi

Reconstruct(I, {si}i∈I) t = | I |
I δI

i (0) ∈ ℤq

s = ∑
i∈I

si ⋅ δI
i (0) mod p

Is Shamir’s Scheme a Secure Secret Sharing?

21

1) correctness: any set of parties can reconstruct (together)

2) privacy: no single party alone learns anything about
3) -security: any subset of less than parties cannot compute

t− t s
s

(t − 1) t s

Yes! And all properties hold unconditionally (information theoretically)

But for the scheme to work, we rely on the fact that the parties have peer-to-peer, confidential
and possibly authenticated channels (that can be built with techniques from Module 1 and 2).

n

22

And Now What?

Threshold Cryptography

23

Threshold El-Gamal’s Cryptosystem

๏ : [same setting as ElGamal] Sample . Set .

Use Shamir secret sharing to compute .
Output and send to party .

๏ : Sample . Output the ciphertext .

๏ : Parse . Compute .

๏ :  
Compute . Parse .  

Output .

KeyGen(sec . par) x ← $ℤ*q 𝗉𝗄 = gx

(𝗌𝗄1, …𝗌𝗄n) ← Distribute(q, n, t, x)
𝗉𝗄 𝗌𝗄i i

Enc(𝗉𝗄, m) r ← $ℤ*q c = (gr, m ⋅ 𝗉𝗄r)
Dec′￼(𝗌𝗄i, c) c = (c1, c2) di = c𝗌𝗄i

1
Recover(I, {di}i∈I, c)

D = ∏
i∈I

dδi(0)
i = gr∑i∈I 𝗌𝗄i ⋅ δi(0) = grx c = (c1, c2)

m = c2 ⋅ D−1

Introduction to Multi-Party Computation
• What Is MPC

• Terminology

• An Intuition of Security

Secret Sharing Scheme
• Motivation

• Definition

• A Simple Construction

• Shamir Secret Sharing Scheme

• An Application: Threshold Cryptography

Commitment Schemes Interlude
• Pedersen Commitment - Proof

• A Security Note - Proof

Module 3: Agenda

Zero-Knowledge Proofs
Σ-Protocols
Generic 2 Party Computation
Garbled Circuits

Back to Sharing
• Verifiable Secret Sharing (Pedersen)

Oblivious Transfer
• Example

• DDH-Based Construction

24

Commitment Schemes Definitions

25

Syntax
A commitment scheme over a set of messages , a set of keys/randomness

 and a set of commit values is defined by the two following PPT
algorithms:

๏ is a deterministic algorithm that takes in input a message
and a random string ; and outputs a commitment to .

๏ this is a deterministic algorithm that takes in input a
message and a random string , and a commitment , and returns 1 (accept) if
 is a valid commitment (for); and 0 (reject) otherwise.

ℳ
{0,1}n C

𝖢𝗈𝗆𝗆𝗂𝗍(m, r) = c m
r c m

𝖮𝗉𝖾𝗇(m, r, c) ∈ {0,1}
m r c

c m, r

… and satisfying the binding and hiding properties (given next)

Commitment Schemes

26

𝒜
(m_0 , m_1) ∈ M

𝒞
b ∈ {0, 1}

r ∈ R

c = Commit(m_b, r)

c

b*

IND-CPA security for Encryption Schemes !

🧐 Is it possible to realize a Commitment Scheme using any Encryption Scheme?

|Prob[b* = b] - 1/2| ≤ negligible

have you seen
this game before?

👇

Pedersen Commitment Scheme

27

Hiding?

Binding?

Setup(sec.par) → (, q, g, h)

Commit(m,r) = gm hr mod q =: c

Open(m,r,c) = 1 if c = gm hr mod q,

 and 0 otherwise

𝔾

yes, computationally

yes, information-theoretically

Prob[Commit(m , r) = c = Commit(m*, r*) | m≠m*] ≤ negligible

|Prob[b* = b] - 1/2| ≤ negligible

Setting: g,h are two distinct generators
of a group of order q𝔾

Proof by reduction:

Given the values {c, (m,r) , (m*,r*)} we can extract the discrete logarithm of h with respect

to g via

dLogg(h) =
m * −m
r − r *

Proof: for every m_1 there exist an r* s.t. commit(m_1,r*)=commit(m_0,r) [similar to the one time pad]

An (Important) Security Note

28

Theorem There exists no commitment scheme which is both information-
theoretically concealing and binding. [Lemma 20.3. from the book]

Suppose we have a scheme which is both information-theoretically concealing and binding,

(now we want to conclude that this contradicts the statement of the theorem)

and suppose the committing party (the sender) generates a commitment c = Commit(m, r).

The information-theoretical hiding property implies that there must exist values m* (≠ m) and r*
such that c = Commit(m*, r*);

why?

otherwise an infinitely powerful receiver could break the concealing property (find the unique
pair (m,r) that generates the commitment c).

But now we know that there exists an m* s.t. Commit(m*,r*)=c=Commit(m,r) which means the
commitment is not binding (and an infinitely powerful sender can find such m*)

So we conclude that if the commitment scheme is information-theoretically hiding it cannot be
binding for a computationally unbounded sender, which contradicts the statement of the
theorem. The conclusion is that it was absurd to assume the existence of a commitment
scheme that is both hiding and binding in a information-theoretically way.

Proof. (by reduction to absurd)

Introduction to Multi-Party Computation
• What Is MPC

• Terminology

• An Intuition of Security

Secret Sharing Scheme
• Motivation

• Definition

• A Simple Construction

• Shamir Secret Sharing Scheme

• An Application: Threshold Cryptography

Commitment Schemes Interlude
• Pedersen Commitment - Proof

• A Security Note - Proof

Module 3: Agenda

Zero-Knowledge Proofs
Σ-Protocols
Generic 2 Party Computation
Garbled Circuits

Back to Sharing
• Verifiable Secret Sharing (Pedersen)

Oblivious Transfer
• Example

• DDH-Based Construction

29

Pedersen Verifiable Secret Sharing (VSS)

30

๏ : [this algorithm is run by the dealer, who holds the secret]  

Sample at random . Define the polynomials 

 and . 
Compute the share for party as: [is sent to via a secure channel] 
Publish a collection of commitments to each share: , where

๏ : Check share consistency

๏ : For a subset do like in Shamir secret sharing
to reconstruct and [Lagrange interpolation with evaluation at 0] and
verify the consistency

Distribute(s) s ∈ ℤp

a1, …, at−1, b0, …, bt−1 ← $ℤp

a(x) = s + a1x + … + at−1xt−1 b(x) = b0 + b1x + … + bt−1xt−1

Pi si = (a(i), b(i)) si Pi
{Ci}t

n=0 Ci = gaihbi a0 = s

Verify(si, {Cj}) gsi[1] ⋅ hsi[2] =
t

∏
j=0

(Cj)ij

Reconstruct(I, {si}i∈I, {Ci}i∈i) | I | = t
a(0) = s b(0) = b0

gs ⋅ hb0 = C0

Introduction to Multi-Party Computation
• What Is MPC

• Terminology

• An Intuition of Security

Secret Sharing Scheme
• Motivation

• Definition

• A Simple Construction

• Shamir Secret Sharing Scheme

• An Application: Threshold Cryptography

Commitment Schemes Interlude
• Pedersen Commitment - Proof

• A Security Note - Proof

Module 3: Agenda

Zero-Knowledge Proofs
Σ-Protocols
Generic 2 Party Computation
Garbled Circuits

Back to Sharing
• Verifiable Secret Sharing (Pedersen)

Oblivious Transfer
• Example

• DDH-Based Construction

31

Oblivious Transfer an Intuition

32

Sender Receiver

b ∈ {0,1}

x0, x1

xb

OT

Functionality

ℱOT({x0, x1}, b) ↦ (Ø, xb)

TeSender learns nothing

Recevier only learns Sender’s -th inputb

Oblivious Transfer Definitions

33

Syntax A 1-out-of-2 oblivious transfer (OT) is an interactive protocol between
a Sender and a Receiver that realizes the following:

• Input: Sender knows (); Receiver knows .

• Output: Sender knows (); Receiver knows and .

x0, x1 b ∈ {0,1}

x0, x1 b ∈ {0,1} xb

… in particular:

the Receiver learns nothing about , and the Sender learns nothing about x1−b b

👀 : one can build 1ooN OT by running N parallel instances of 1oo2 OT

Construction 1: OT Based on the DDH Assumption

34

Sender Receiver

Input: (X0, X1) Input: b ∈ {0,1}

Output: XbOutput: Ø

OT
Functionality

🧐 What is the DDH assumption?

Construction 1: OT Based on the DDH Assumption

35

Sender Receiver

Input: (X0, X1) ∈ 𝔾 Input: b ∈ {0,1}

Auxiliary inputs:
(public parameters)

(𝔾, g, q)

pick α, β, γ ← ${1,…, q}

if b = 0 set a = (gα, gβ, gαβ, gγ)

if b = 1 set a = (gα, gβ, gγ, gαβ)
a ∈ 𝔾4

Consistency checks:

and (otherwise abort)
a = (a[0], a[1], z[0], z[1]) ∈ 𝔾4

z[0] ≠ z[1]

pick u0, u1, v0, v1 ← ${1,…, q}

wd = a[0]ud ⋅ gvd

cd = Xd ⋅ kd

kd = z[d]ud ⋅ a[1]vd

for d ∈ {0,1} do

(w0, c0, w1, c1) compute kb = wβ
b

Output: Xb

compute Xb = cb ⋅ (kb)−1

Output: Ø

inverse in 𝔾

Construction 1: OT Based on the DDH Assumption

36

pick α, β, γ ← ${1,…, q}

if b = 0 set a = (gα, gβ, gαβ, gγ)

if b = 1 set a = (gα, gβ, gγ, gαβ)
a ∈ 𝔾4

Consistency checks:

and (otherwise abort)
a = (a[0], a[1], z[0], z[1]) ∈ 𝔾4

z[0] ≠ z[1]

pick u0, u1, v0, v1 ← ${1,…, q}

wd = a[0]ud ⋅ gvd

cd = Xd ⋅ kd

kd = z[d]ud ⋅ a[1]vd

for d ∈ {0,1} do

(w0, c0, w1, c1) compute kb = wβ
b

compute Xb = cb ⋅ (kb)−1

Correctness (the Receiver gets the intended output)

Receiver’s Privacy (security against a malicious Sender)

Sender’s Privacy (security against a malicious Receiver)
xijufcpbse
qsppgt

Adversary: is static, malicious, PPT | Privacy: No party should learn anything other than its prescribed output

