
CRYPTOGRAPHY
(lecture 7)

Literature:
“A Graduate Course in Applied Cryptography” (ch 13.3, 19.3, 8.10.2 until pg324)

“A note on blind signature schemes” by Matthew Green
“Blind Signatures for Untraceable Payments” by David Chaum, “Digital Signatures” by Tibor Jager

“Lecture Notes on Cryptographic Protocols” by Schoenmakers (ch 8.0,8.1,8.2)

“Group Signatures: Authentication with Privacy” (ch 1.1.1, 1.2, 1.3.0, 1.3.1, 1.4, 1.5.0, 1.5.1, 1.5.2, 1.5.3,

1.6.4)
“The Mathematics of Elliptic Curve Cryptography” (on Canvas)

https://toc.cryptobook.us/
https://blog.cryptographyengineering.com/a-note-on-blind-signature-schemes/
https://sceweb.sce.uhcl.edu/yang/teaching/csci5234WebSecurityFall2011/Chaum-blind-signatures.PDF
https://www.tiborjager.de/main.pdf
https://www.win.tue.nl/~berry/CryptographicProtocols/LectureNotes.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/GruPA/GruPA.pdf?__blob=publicationFile

OW(Trapdoor)Functions
DH Key-Exchange
DL, CDH, DHH
Number Theory
RSA, ElGamal Cryptosystems
IND-CPA and IND-CCA

Module 2: Agenda

Secure Instant Messaging
Post Quantum Cryptography
The Birthday Paradox

Elliptic Curve Cryptography
• Brief Math Background

• ECDSA

Advanced Properties for Signatures
• Group Signatures

• Blind Signature

• Application: Untraceable eCash

Digital Signatures
• Problem Statement

• Syntax

• RSA Signatures

• The Hash-and-Sign Paradigm

• Proof

2

Authenticating the Source of Information Over the Internet

3

𝒜
k k

Problem: if both Alice and Bob know k, then cryptographically they are the same person.
Bob cannot convince a third party that Alice has produced something (e.g. a MAC) that
requires the knowledge of k. Whatever Alices produces, Bob can produce it as well!

𝒜
𝗌𝗄 𝗉𝗄

With public key cryptography Alice is the only one to know sk. If she uses it to do something
that is (computationally) impossible to do without sk, then everyone can be convinced she did it.

Digital Signature - Syntax

4

Definition: Digital Signature

A digital signature scheme is a triple of PPT algorithms defined as follows:

๏ is a probabilistic key generation algorithm

๏ is a (possibly) probabilistic algorithm that outputs a signature for a message

๏ is a deterministic algorithm that returns ‘1’ (accept) if is considered valid for
against , or ‘0’ (reject) otherwise.

(KeyGen, Sign, Ver)
KeyGen(n) → (𝗉𝗄, 𝗌𝗄)

Sign(𝗌𝗄, m) → σ σ m

Ver(𝗉𝗄, m, σ) σ m
𝗉𝗄

Correctness

For all key pairs it holds that:
(𝗉𝗄, 𝗌𝗄) ← KeyGen(n) Ver(𝗉𝗄, m, Sign(𝗌𝗄, m)) = 1
Pr[Ver(𝗉𝗄, m, σ) = 1 |σ ← Sign(𝗌𝗄, m)] = 1

Towards a Security Notion for Digital Signatures

5

𝒪Sign
𝗌𝗄

 Oracle

Key-Only Attack: knows only the singer’s pk, and therefore only has the capability
of checking the validity of signatures of messages

Known Signature Attack: knows pk and sees message/signature pairs chosen
and produced by the legal signer

Chosen Message Attack: knows pk and can ask the signer to sign a number of
messages of the adversary’s choice.

𝒜

𝒜

𝒜

𝒜 Adversary’s Goal

Adversary’s Power and Knowledge

Existential Forgery: succeeds in creating a valid  
 signature of a new message (never seen before)

Strong Forgery: succeeds in creating a valid signature of some message of ’s choice  
 and the signature is different from any signature seen by

Universal Forgery: is able to generate a valid signature for any message (but ignores sk)

Total Break: can compute the signer’s secret key sk

𝒜

𝒜 𝒜
𝒜

𝒜

𝒜

The recipe for a good security notion: 

1. Choose a realistic adversary (PPT, Quantum…)
2. Give to the strongest starting knowledge
3. Select the weakest damage to the cryptosystem
4. DONE!

𝒜

Towards a Security Notion for Digital Signatures

7

𝒪Sign
𝗌𝗄

 Oracle

Key-Only Attack: knows only the singer’s pk, and therefore only has the capability
of checking the validity of signatures of messages (a bit unrealistic)

Known Signature Attack: knows pk and sees message/signature pairs chosen
and produced by the legal signer (in reality, this the minimum one should assume)

Chosen Message Attack: knows pk and can ask the signer to sign a number of
messages of the adversary’s choice. (this is our standard)

𝒜

𝒜

𝒜

𝒜 Adversary’s Goal

Adversary’s Power and Knowledge

Existential Forgery: succeeds in creating a valid  
 signature of a new message (never seen before)

Strong Forgery: succeeds in creating a valid signature of some message of ’s choice  
 and the signature is different from any signature seen by

Universal Forgery: is able to generate a valid signature for any message (but ignores sk)

Total Break: can compute the signer’s secret key sk

𝒜

𝒜 𝒜
𝒜

𝒜

𝒜

Existential Unforgeability Under Chosen Message Attack

8

 wins the security game iff:

 AND

𝒜
Ver(𝗉𝗄, m*, σ*) = 1 m* ∉ {m1, …, mQM

}

mi

σi

adaptive queries

(m*, σ*)

Aim: quantify the ’s likelihood in forging a valid signature for a new message 𝒜 σ* m*

𝒞 𝗉𝗄

Sign(𝗌𝗄, mi) → σi

KeyGen(n) → (𝗉𝗄, 𝗌𝗄) for i = 1,…, QM = poly(n)

win or lose

𝒜

(EUF-CMA)

Secure Signature

9

A Digital Signature Scheme is said to be secure (unforgeable
under chosen message attack) if for all efficient adversaries the
probability that wins the EUF-CMA security game is negligible.
Formally,

𝒜

Pr[Ver(𝗉𝗄, m*, σ*) = 1 | (m*, σ*) ← 𝒜𝒪Sign
𝗌𝗄 (𝗉𝗄) ∧ m* ∉ {mi}

QM
i=1] ≤ negl(n)

Textbook RSA Signature Scheme

10

KeyGen (sec.par) ⇨ (sk, pk)

Sign (sk, m) ⇨ σ

(pk, m, σ) ⇨ {0, 1}Ver

Check: m = σe mod N ?

The message is m in
Compute: σ = md mod N

ℤN

Pick: p,q two distinct sec.par-bit long primes
Compute: N=pᐧq, and e,d s.t. eᐧd=1 mod ɸ(N)
sk = (N, d)
pk = (N, e)

🧐 Is this construction EUF-CMA secure?

[No! Because RSA is homomorphic]

The RSA-FDH Signature Scheme

11

[No! We need a long-output hash function

full domain hash (FDH), N~2048bits]

🧐 Can we use sha256?

KeyGen (sec.par) ⇨ (sk, pk)

Sign (sk, msg) ⇨ σ

(pk, msg, σ) ⇨ {0, 1}Verify

Hash the message: H(msg)=h

Check: h = σe mod N

Hash the message: H(msg)=h
Compute: σ = hd mod N

Pick: p,q two distinct sec.par-bit long primes
Compute: N=pᐧq, and e,d s.t. eᐧd=1 mod ɸ(N)
sk = (N, d)
pk = (N, e)

A More General Look: the Hash-and-Sign Paradigm

12

KeyGen (sec.par) ⇨ (sk, pk)

Sign (sk, msg) ⇨ σ

(pk, msg, σ) ⇨ {0, 1}Verify

Hash the message: H(msg)=h

Check: h = σe mod N

Hash the message: H(msg)=h
Compute: σ = hd mod N

Pick: p,q two distinct sec.par-bit long primes
Compute: N=pᐧq, and e,d s.t. eᐧd=1 mod ɸ(N)
sk = (N, d)
pk = (N, e)

Full Domain Hash + One-Way Trapdoor
Permutation = Secure Digital Signature

Sig.KeyGen :

Sig.Sign(sk, msg) :

Sig.Ver(pk,msg,σ) : test ?

OWTF . KeyGen(n) → (𝗉𝗄, 𝗌𝗄)
I(𝗌𝗄, H(msg)) = σ

F(𝗉𝗄, σ) = H(msg)

Security Proof

13

The RSA-FDH signature scheme is EUF-CMA secure in the Random Oracle Model
under the RSA assumption [given (N,e,c) find m such that cd = m mod N].

The hash function H is
modelled as if it was a
truly random function 𝒪

How do we prove security? As in Module1, proof by contradiction.

Reasoning: if breaks the EUF-CMA security of RSA-FDH with non-negligible
probability, then we can build a new adversary (called reduction) that uses
to break the RSA assumption, with non-negligible probability.

𝒜
ℬ 𝒜

Proof: the Reduction

14

ℬ simultaneously acts as attacker against the RSA problem and
as challenger in the EUF-CMA security game with 𝒜

𝒞
RSA challenger

RSA setting:

N=pq

ed =1 mod ɸ(N)

c ← $ℤN

(N, e, c)

m̃*

𝒜
σi

(m*, σ*)

𝗉𝗄 = (𝖭, 𝖾)

mi

hj

mj (𝖱 . 𝖮.)

Answering R.O. queries
Give consistent replies.

For a new message

With probability f:

With probability (1-f):

Store , return

Answering Signing queries
If : call R.O.

If : check:

if : return

if : Abort

(mj, ⋅ , ⋅) ∉ L
rj ← $ℤ*N

hj ← re
j mod N

hj ← c ⋅ re
j mod N

(mj, hj, rj) in L hj

(mi, ⋅ , ⋅) ∉ L
(mi, ⋅ , ⋅) ∈ L
hi = re

i mod N σi = ri

hi = c ⋅ re
i mod N

Proof: the Reduction

15

ℬ acts simultaneously as attacker against the RSA problem and
as challenger in the EUF-CMA security game with 𝒜

𝒞
RSA challenger

RSA setting:

N=pq

ed =1 mod ɸ(N)

c ← $ℤN

(N, e, c)

m̃*

𝒜

With probability f:

With probability (1-f):

Store , return

if : return

if : Abort

hj ← re
j mod N

hj ← c ⋅ re
j mod N

(mj, hj, rj) in L hj

hi = re
i mod N σi = ri

hi = c ⋅ re
i mod N

If there exists an index s.t.

1)

And

2)

Return to :

i
H(m*) = hi = c ⋅ (ri)e mod N

Ver(𝗉𝗄, m*, σ*) = 1
𝒞 m̃* = σ* ⋅ r−1

i mod N

σi

mi

(m*, σ*)

𝗉𝗄 = (𝖭, 𝖾)

hj

mj (𝖱 . 𝖮.)

Proof: Finalising the Reasoning

16
For missing details check “On the exact
security of full domain hash” or these slides

Now we have a full description of the reduction . We need to prove a few properties:ℬ
1) perfectly simulates the EUF-CMA game to :

๏ The values returned by look random

๏ The signatures look proper

2) ’s output is a correct.

ℬ 𝒜
hj ℬ

σi
ℬ

👍 because rj ← $ℤ*N
👍 because when does not abort, and

. So
ℬ σi = ri

H(mi) = hi = re
i mod N σe

i = re
i = H(m) mod N

3) does not abort with probability .

5) If works (i.e., it does not abort), then can use ’s forgery to break RSA (invert the encryption)
with probability 1-f.

5) If succeeds with non-negligible probability then succeeds with non-negligible probability

ℬ f QM

ℬ ℬ 𝒜

𝒜 δ ℬ
(1 − f) ⋅ f QM ⋅ δ

QM

(Proof: Cleaning the Details - Not Needed for the Exam)

👍 because iff iff Ver(𝗉𝗄, m*, σ*) = 1 (σ*)e = H(m*) = c ⋅ re
i = (cd ⋅ ri)e mod N σ* = cd ⋅ ri

https://link.springer.com/content/pdf/10.1007/3-540-44598-6_14.pdf
https://link.springer.com/content/pdf/10.1007/3-540-44598-6_14.pdf
https://link.springer.com/content/pdf/10.1007/3-540-44598-6_14.pdf
https://www.iaik.tugraz.at/wp-content/uploads/teaching/mpkc/2021/L3-signatures.pdf

OW(Trapdoor)Functions
DH Key-Exchange
DL, CDH, DHH
Number Theory
RSA, ElGamal Cryptosystems
IND-CPA and IND-CCA

Module 2: Agenda

Secure Instant Messaging
Post Quantum Cryptography
The Birthday Paradox

Elliptic Curve Cryptography
• Brief Math Background

• ECDSA

Advanced Properties for Signatures
• Group Signatures

• Blind Signature

• Application: Untraceable eCash

Digital Signatures
• Problem Statement

• Syntax

• RSA Signatures

• The Hash-and-Sign Paradigm

• Proof

17

ECDSA - Background on Elliptic Curve Cryptography

18[gifs from arstechnica]

y2 = x3 + ax + b

Elliptic curves have a group structure

y2 = x3 − x + 1 mod 97

https://arstechnica.com/information-technology/2013/10/a-relatively-easy-to-understand-primer-on-elliptic-curve-cryptography/2/

ECDSA - Algorithms

19

KeyGen

Sign

Verify

z = sha256(msg)
T = [z·inv(s) mod n]*G
P = [inv(s)·r mod n]*Q
if R == T+P return 1
else return 0

(pk, msg, sgn) ⇨ {0, 1}

k ←$⎯ [0 ... n-1]
R = k*G
r = R_x mod n
z = sha256(msg)
s = inv(k)·(z + d·r) mod n
sgn = (r, s)

(sk, msg) ⇨ sgn

(sec.par) ⇨ (sk, pk)
d ←$⎯ [0 ... n-1]
sk = d
pk = Q = d*G

ECDSA - the Good

20

★ Shorter keys and better security than the RSA signature scheme

★ Non malleable

★ IoT friendly

★ In wide adoption (TLS, DigiCert (Symantec), Sectigo (Comodo) …)

ECDSA - the Bad

21

repeated nonce attack Bonus 2

What now?

EdDSA
Check out this blog for comparison between ECDSA and EdDSA (‘conclusions’ gives a very good summary)

🧐 what happens if the same
nonce k is used to sign two
different messages?

k ←$⎯ [0 ... n-1]
R = k*G
r = R_x mod n
z = sha256(msg)
s = inv(k)·(z + d·r) mod n

https://medium.com/asecuritysite-when-bob-met-alice/whats-the-difference-between-ecdsa-and-eddsa-e3a16ee0c966

Advanced Properties for Digital Signatures

22

Group Signatures

Threshold Signatures

Blind SignaturesHomomorphic Signatures
Ring Signatures

Proxy Signatures
Multi Signatures

Sequential Signatures

Structure Preserving Signatures

Attribute-Based Signatures

Identity-Based Signatures

Aggregate Signatures

Forward Secure Signatures

Anonymous Signatures
Functional Signatures

Redactable Signatures

Key-Homomorphic Signatures

OW(Trapdoor)Functions
DH Key-Exchange
DL, CDH, DHH
Number Theory
RSA, ElGamal Cryptosystems
IND-CPA and IND-CCA

Module 2: Agenda

Secure Instant Messaging
Post Quantum Cryptography
The Birthday Paradox

Elliptic Curve Cryptography
• Brief Math Background

• ECDSA

Advanced Properties for Signatures
• Group Signatures

• Blind Signature

• Application: Untraceable eCash

Digital Signatures
• Problem Statement

• Syntax

• RSA Signatures

• The Hash-and-Sign Paradigm

• Proof

23

Group Signatures

24

group manager

signers / group
members

 Group Signatures

25

1. Introduction and Background

of those schemes to the high-level overview of their core properties, without detailing their
constructions in the remaining part of this work.

1.3.1. Static Group Signatures
We start with static group signature schemes, where the number of group members is assumed
to be fixed during the initialization stage. This stage includes the computation of secret signing
keys for each member by the group manager. At a high level static schemes contain algorithms
for key generation, signing and verification, and the opening procedure that identifies the signer.
They involve only one group manager, which takes care of computing the secret signing keys
of prospective group members and of opening their group signatures. Static schemes have the
following four main algorithms as also illustrated in Figure 1.1:

Key generation. The key generation algorithm executed by the group manager will be
denoted by GKg. In static schemes this algorithm generates public key of the group,
private key of the group manager allowing the latter to open group signatures, and a
(personal) secret signing key for each member of the group.

Signature generation. Each group member, in possession of her (personal) secret signing
key can issue group signatures using the group signing algorithm, which we denote GSign.

Signature verification. The validity of an issued group signature on some message can be
checked using the verification algorithm GVrfy. This algorithm is public in that it can be
executed by any party using the public group key generated by the manager.

Opening procedure. In case of dispute the group manager can identify the signer of some
(valid) group signature using the opening algorithm, which we denote by Open. This
algorithm can only be executed by the group manager using the secret key of the latter.

GSign

GKg

GVrfyOpen

secret signing key
of member i

message

group
signature

group public key

group manager’s
secret key

valid / invalidmember i / error

Figure 1.1.: Static Group Signatures

Federal O�ce for Information Security 24

Blind Signatures

 Blind Signatures

27

Definition: Blind Signature

A blind signature scheme is a
signature scheme where the signing
algorithm algorithms is replaced
by an interactive protocol run between
a signer/issuer (S) and a receiver (R).

The protocol starts with R who has as
input a message , and S who has as
input a secret key .

At the end of the interaction R obtains
a signature on , and S learns
nothing about or .

Sign

m
𝗌𝗄

σ m
m σ

Receiver Signer/Issuer

sign_skm

σ ∅

🧐 where can this be useful?
untraceable electronic payment system

attribute-based credentials [ABC, lecture 12 by Victor]

Chaum’s Untraceable eCash System

28

Bmjdf Cpc

Cbol

(1)
withdraw
eCoin

(2)
send
eCoin

(3) transfer eCoin

(4)
deposit/redeem

eCoin

1. Only the Bank can generate eCoins

2. Users cannot double spend eCoins (money cloning)

3. eCoins should be untraceable, like physical cash

Property Wishlist

1. How To Make Sure Only the Bank Creates eCoins?

29

Solution: eCoin is a bit string together with a digital signature generated using the Bank’s sk
unforgeability ensures that cannot generate eCoins𝒜

2. How To Prevent Double Spending?

report to the bank every eCoin ever spent (upon payment the eCoin looses its
value, the bank produces a new eCoin of the appropriate value for the seller)

Easy option:
🧐 does
this work?

remove buyer anonymity only if (s)he attempts to double spend a eCoin (blind signatures)
A better option:

2&3 Prevent Double Spending and Keep eCoins Untraceable

30

Aim: the Bank should be able to sign an eCoin, without knowing what eCoin it is

B

Bmjdf Cbol

sign_sk

blinded message

blind signature
S̄

pick a random r

extract signature for x

B = reH(x) mod n

S̄ = (B)d mod n

S = r−1S̄ mod n

 is a valid signature for , and the Bank has never seen or !S x x H(x)

𝗌𝗄 = d

The eCoin withdrawal procedure with RSA (blind) signatures

J xbou up tqfoe
fDpjo /x

For simplicity assume all
eCoins have value 1
(this does not mean x=1)

🧐 is S a valid
signature?

2&3 Prevent Double Spending and Keep eCoins Untraceable

31

Bmjdf

Spending and Redeeming eCoins

J xbou up tqfoe
fDpjo /x

S = r−1S̄ mod n

eCoin x

Cbol

sign_sk

Cpc

(x, S)
1. send signed eCoin

2. verify signature

eCoin is legit

good eCoin?

3.

already
spend?

(x, S)

4.
y/n

5. Accept / reject

🧐 this approach is
not practical, why?

A Better Untraceable eCash Protocol - Withdrawal

32

Aim: Alice looses her anonymity (gets disclosed) if and only if she tries to spend the same coin twice IDA

Bmjdf Cbol

sign_sk
𝗌𝗄 = d

pick 4-tuples of random
numbers:

2k

{ai, bi, ci, ri}2k
i=1 B1, …, B2k

blinded valueslet: xi = h(ai, bi)
yi = h(ai ⊕ IDA, ci)

IDA IDA

Bi = re
i h(xi, yi) mod n

compute:

probabilistically verify
that Alice has put her
identity in every blinded
value using the Cut-and-
Choose technique

pick random indexes:k

I = {i1, i2, …, ik}
indexes to check

I

reveal the asked values
{ai, bi, ci, ri}i∈I
reveal values

S̄ = (Πi∉IBi)d mod n

re-compute the for
and check that they
contain . If Alice did
not cheat, sign the
blind value on the
unblinded indexes:

Bi i ∈ I
IDA

S̄
S = r−1S̄ mod n

extract a signature for
the coin :

S
x = Πi∉Ih(xi, yi)

dvu boe
dipptf
ufdiojrvf

A Better Untraceable eCash Protocol - Spending

33

Bmjdf

J xbou up
tqfoe dpjo / x

Cpc

(x, S)
send signed coin

verify Bank’s signature

is the coin good?

coin and signature x S

pick rand bits k zi ∈ {0,1}

challenge Alice

Z = (z1, z2, …, zk)

R = (R1, R2, …, Rk)
response

disclose the values:

Rj = {
(xj, aj ⊕ IDA, cj), if zj = 0
(aj, bj, yj) if zj = 1 verify that Alice knows

how to construct x

3. is
 good?R 4.y/n

if Alice tries to spend the same coin twice

then with high probability soZ ≠ Z′￼

IDA

∃j, zj = 0, z′￼j = 1

Rj ⊕ R′￼j = aj ⊕ IDA ⊕ aj = Alice looses her anonymity to the Bank⇒

