## CRYPTOGRAPHY

## (lecture 7)

## Literature:

"A Graduate Course in Applied Cryptography" (ch 13.3, 19.3, 8.10.2 until pg324)
"A note on blind signature schemes" by Matthew Green
"Blind Signatures for Untraceable Payments" by David Chaum, "Digital Signatures" by Tibor Jager
"Lecture Notes on Cryptographic Protocols" by Schoenmakers (ch 8.0,8.1,8.2)
"Group Signatures: Authentication with Privacy" (ch 1.1.1, 1.2, 1.3.0, 1.3.1, 1.4, 1.5.0, 1.5.1, 1.5.2, 1.5.3,
"The Mathematics of Elliptic Curve Cryptography" (on Canvas)

## Module 2: Agenda

OW(Trapdoor)Functions
DH Key-Exchange
DL, CDH, DHH
Number Theory
RSA, EIGamal Cryptosystems
IND-CPA and IND-CCA

## Digital Signatures

- Problem Statement
- Syntax
- RSA Signatures
- The Hash-and-Sign Paradigm
- Proof

Elliptic Curve Cryptography

- Brief Math Background
- ECDSA

Advanced Properties for Signatures

- Group Signatures
- Blind Signature
- Application: Untraceable eCash

Secure Instant Messaging Post Quantum Cryptography The Birthday Paradox

## Authenticating the Source of Information Over the Internet



Problem: if both Alice and Bob know $k$, then cryptographically they are the same person. Bob cannot convince a third party that Alice has produced something (e.g. a MAC) that requires the knowledge of $k$. Whatever Alices produces, Bob can produce it as well!


With public key cryptography Alice is the only one to know sk. If she uses it to do something that is (computationally) impossible to do without sk, then everyone can be convinced she did it.

## Digital Signature - Syntax

## Definition: Digital Signature

A digital signature scheme is a triple of PPT algorithms (KeyGen, Sign, Ver) defined as follows:

- KeyGen $(n) \rightarrow(\mathrm{pk}, \mathrm{sk})$ is a probabilistic key generation algorithm
- $\operatorname{Sign}(\mathrm{sk}, m) \rightarrow \sigma$ is a (possibly) probabilistic algorithm that outputs a signature $\sigma$ for a message $m$
- $\operatorname{Ver}(\mathrm{pk}, m, \sigma$ ) is a deterministic algorithm that returns ' 1 ' (accept) if $\sigma$ is considered valid for $m$ against pk , or ' 0 ' (reject) otherwise.


## Correctness

For all key pairs $(\mathrm{pk}, \mathrm{sk}) \leftarrow \operatorname{KeyGen}(n)$ it holds that: $\operatorname{Ver}(\mathrm{pk}, m, \operatorname{Sign}(\mathrm{sk}, m))=1$

$$
\operatorname{Pr}[\operatorname{Ver}(\mathrm{pk}, m, \sigma)=1 \mid \sigma \leftarrow \operatorname{Sign}(\mathrm{sk}, m)]=1
$$

## Towards a Security Notion for Digital Signatures

## Adversary's Power and Knowledge

Key-Only Attack: $\mathscr{A}$ knows only the singer's $p k$, and therefore only has the capability of checking the validity of signatures of messages

Known Signature Attack: $\mathscr{A}$ knows pk and sees message/signature pairs chosen and produced by the legal signer

Chosen Message Attack: $\mathscr{A}$ knows pk and can ask the signer to sign a number of messages of the adversary's choice.

## Adversary's Goal

Existential Forgery: $\mathscr{A}$ succeeds in creating a valid signature of a new message (never seen before)


Strong Forgery: $\mathscr{A}$ succeeds in creating a valid signature of some message of $\mathscr{A}$ 's choice and the signature is different from any signature seen by $\mathscr{A}$

Universal Forgery: $\mathscr{A}$ is able to generate a valid signature for any message (but ignores sk)
Total Break: $\mathscr{A}$ can compute the signer's secret key sk

The recipe for a good security notion:

1. Choose a realistic adversary (PPT, Quantum...)
2. Give to $\mathscr{A}$ the strongest starting knowledge
3. Select the weakest damage to the cryptosystem
4. DONE!


## Towards a Security Notion for Digital Signatures

## Adversary's Power and Knowledge

Key-Only Attack: $\mathscr{A}$ knows only the singer's $p k$, and therefore only has the capability of checking the validity of signatures of messages (a bit unrealistic)

Known Signature Attack: $\mathscr{A}$ knows pk and sees message/signature pairs chosen and produced by the legal signer (in reality, this the minimum one should assume)

Chosen Message Attack $\mathscr{A}$ knows pk and can ask the signer to sign a number of messages ot the adversary's choice. (this is our standard)

## Adversary's Goal

Existential Forgery: $\mathscr{A}$ succeeds in creating a valid signature of a new message (never seen before)


Strong Forgery: $\mathscr{A}$ succeeds in creating a valid signature of some message of $\mathscr{A}$ 's choice and the signature is different from any signature seen by $\mathscr{A}$

Universal Forgery: $\mathscr{A}$ is able to generate a valid signature for any message (but ignores sk)
Total Break: $\mathscr{A}$ can compute the signer's secret key sk

## Existential Unforgeability Under Chosen Message Attack (EUF-CMA)

Aim: quantify the $\mathscr{A}$ 's likelihood in forging a valid signature $\sigma^{*}$ for a new message $m^{*}$


## Secure Signature

A Digital Signature Scheme is said to be secure (unforgeable under chosen message attack) if for all efficient adversaries the probability that $\mathscr{A}$ wins the EUF-CMA security game is negligible. Formally,
$\operatorname{Pr}\left[\operatorname{Ver}\left(\mathrm{pk}, m^{*}, \sigma^{*}\right)=1 \mid\left(m^{*}, \sigma^{*}\right) \leftarrow \mathscr{A}^{\sigma_{\mathrm{sk}}^{\mathrm{Sig}}}(\mathrm{pk}) \wedge m^{*} \notin\left\{m_{i}\right\}_{i=1}^{Q_{M}}\right] \leq \operatorname{negl}(n)$

## Textbook RSA Signature Scheme

```
KeyGen (sec.par) \(\Rightarrow\) (sk, pk)
    Pick: p,q two distinct sec.par-bit long primes
    Compute: \(N=p \cdot q\), and \(e, d s . t . e \cdot d=1 \bmod \Phi(N)\)
    \(s k=(N, d)\)
    \(\mathrm{pk}=(\mathrm{N}, \mathrm{e})\)
```

Sign (sk, m) $\Rightarrow \sigma$
The message is m in $\mathbb{Z}_{N}$
Compute: $\sigma=\mathrm{md} \bmod \mathrm{N}$
(2) Is this construction EUF-CMA secure?
[No! Because RSA is homomorphic]
$\operatorname{Ver}(\mathrm{pk}, \mathrm{m}, \sigma) \Rightarrow\{0,1\}$

Check: $m=\sigma^{\mathrm{e}} \bmod \mathrm{N}$ ?

## The RSA-FDH Signature Scheme

```
KeyGen (sec.par) \(\Rightarrow\) (sk, pk)
    Pick: p,q two distinct sec.par-bit long primes
    Compute: \(N=p \cdot q\), and \(e, d s . t . e \cdot d=1 \bmod \Phi(N)\)
    \(s k=(N, d)\)
    \(\mathrm{pk}=(\mathrm{N}, \mathrm{e})\)
```

Sign (sk, msg) $\Rightarrow \sigma$
Hash the message: $H(m s g)=h$
Compute: $\sigma=\mathrm{hd} \bmod \mathrm{N}$


## Can we use sha256?

[No! We need a long-output hash function full domain hash (FDH), N~2048bits]

```
Verify (pk, msg, \sigma) => {0, 1}
    Hash the message: H(msg)=h
    Check: h = \sigmae mod N
```


## A More General Look: the Hash-and-Sign Paradigm

```
KeyGen (sec.par) }=>\mathrm{ (sk, pk)
Pick: p,q two distinct sec.par-bit long primes
Compute: N=p`q, and e,d s.t. e`d=1 mod \Phi(N)
    sk = (N, d)
    pk = (N, e)
```

Sign (sk, msg) $\Rightarrow \sigma$
Hash the message: $H(m s g)=h$
Compute: $\sigma=h d \bmod N$

Verify (pk, msg, $\sigma$ ) $\Rightarrow\{0,1\}$
Hash the message: $H(\mathrm{msg})=h$
Check: $\mathrm{h}=\sigma^{\mathrm{e}} \bmod \mathrm{N}$

## Full Domain Hash + One-Way Trapdoor Permutation = Secure Digital Signature

Sig.KeyGen : OWTF. $\operatorname{KeyGen}(n) \rightarrow(p k, ~ s k)$
Sig.Sign(sk, msg) : $I(\mathrm{sk}, H(m s g))=\sigma$
Sig.Ver(pk,msg, $\sigma$ ) : test $F(\mathrm{pk}, \sigma)=H(m s g)$ ?

## Security Proof

The RSA-FDH signature scheme is EUF-CMA secure in the Random Oracle Model under the RSA assumption [given $(\mathbf{N}, \mathbf{e}, \mathbf{c})$ find $\boldsymbol{m} \boldsymbol{s u c h}$ that $\boldsymbol{c} \boldsymbol{d}=\boldsymbol{m} \boldsymbol{\operatorname { m o d }} \mathbf{N}$ ].


The hash function H is modelled as if it was a truly random function $\mathfrak{O}$

How do we prove security? As in Module1, proof by contradiction.
Reasoning: if $\mathscr{A}$ breaks the EUF-CMA security of RSA-FDH with non-negligible probability, then we can build a new adversary (called reduction) $\mathscr{B}$ that uses $\mathscr{A}$ to break the RSA assumption, with non-negligible probability.

## Proof: the Reduction

simultaneously acts as attacker against the RSA problem and as challenger in the EUF-CMA security game with $\mathscr{A}$


## Answering R.O. queries

Give consistent replies.
For a new message $\left(m_{j}, \cdot, \cdot\right) \notin L \quad-\mathrm{pk}=(\mathrm{N}, \mathrm{e}) \rightarrow$
$r_{j} \leftarrow \$ \mathbb{Z}_{N}^{*}$
With probability $\mathrm{f}: h_{j} \leftarrow r_{j}^{e} \bmod N$


With probability (1-f): $h_{j} \leftarrow c \cdot r_{j}^{e} \bmod N$ Store $\left(m_{j}, h_{j}, r_{j}\right)$ in $L$, return $h_{j}$

Answering Signing queries
If $\left(m_{i}, \cdot, \cdot\right) \notin L$ : call R.O.
If $\left(m_{i}, \cdot, \cdot\right) \in L$ : check:
if $h_{i}=r_{i}^{e} \bmod N:$ return $\sigma_{i}=r_{i}$
if $h_{i}=c \cdot r_{i}^{e} \bmod N:$ Abort

$$
\leftarrow\left(m^{*}, \sigma^{*}\right)-
$$

## Proof: the Reduction

$\left(\begin{array}{l}\mathrm{RSA} \text { challenger } \\ \mathrm{RSA} \text { setting: } \\ \mathrm{N}=\mathrm{pq} \\ \mathrm{ed}=1 \bmod \phi(\mathrm{~N}) \\ \mathrm{c} \leftarrow \$ \mathbb{Z}_{N}\end{array}\right)-(N, e, c) \rightarrow$

With probability $\mathrm{f}: h_{j} \leftarrow r_{j}^{e} \bmod N$
With probability $(1-\mathrm{f}): h_{j} \leftarrow c \cdot r_{j}^{e} \bmod N-\mathrm{pk}=(\mathrm{N}, \mathrm{e}) \rightarrow$
Store $\left(m_{j}, h_{j}, r_{j}\right)$ in $L$, return $h_{j}$

if $h_{i}=r_{i}^{e} \bmod N$ : return $\sigma_{i}=r_{i}$
if $h_{i}=c \cdot r_{i}^{e} \bmod N:$ Abort

If there exists an index $i$ s.t.

1) $H\left(m^{*}\right)=h_{i}=c \cdot\left(r_{i}\right)^{e} \bmod N$

And
2) $\operatorname{Ver}\left(\mathrm{pk}, m^{*}, \sigma^{*}\right)=1$

Return to $\mathscr{C}: \tilde{m}^{*}=\sigma^{*} \cdot r_{i}^{-1} \bmod N \leftarrow\left(m^{*}, \sigma^{*}\right)-$

## Proof: Finalising the Reasoning

Now we have a full description of the reduction $\mathscr{B}$. We need to prove a few properties:

1) $\mathscr{B}$ perfectly simulates the EUF-CMA game to $\mathscr{A}$ :

- The values $h_{j}$ returned by $\mathscr{B}$ look random because $r_{j} \leftarrow \$ \mathbb{Z}_{N}^{*}$
- The signatures $\sigma_{i}$ look proper $\&$ because when $\mathscr{B}$ does not abort, $\sigma_{i}=r_{i}$ and

2) $\mathscr{B}$ 's output is a correct.

$$
H\left(m_{i}\right)=h_{i}=r_{i}^{e} \bmod N \text {. So } \sigma_{i}^{e}=r_{i}^{e}=H(m) \bmod N
$$

${ }^{4}$ because $\operatorname{Ver}\left(\mathrm{pk}, m^{*}, \sigma^{*}\right)=1$ iff $\left(\sigma^{*}\right)^{e}=H\left(m^{*}\right)=c \cdot r_{i}^{e}=\left(c^{d} \cdot r_{i}\right)^{e} \bmod N$ iff $\sigma^{*}=c^{d} \cdot r_{i}$

## (Proof: Cleaning the Details - Not Needed for the Exam)

3) $\mathscr{B}$ does not abort with probability $f^{Q_{M}}$.
4) If $\mathscr{B}$ works (i.e., it does not abort), then $\mathscr{B}$ can use $\mathscr{A}$ 's forgery to break RSA (invert the encryption) with probability $1-\mathrm{f}$.
5) If $\mathscr{A}$ succeeds with non-negligible probability $\delta$ then $\mathscr{B}$ succeeds with non-negligible probability

$$
\underline{(1-f) \cdot f^{Q_{M}} \cdot \delta}
$$

## Module 2: Agenda

OW(Trapdoor)Functions
DH Key-Exchange
DL, CDH, DHH
Number Theory
RSA, EIGamal Cryptosystems
IND-CPA and IND-CCA

Digital Signatures

- Problem Statement
- Syntax
- RSA Signatures
- The Hash-and-Sign Paradigm
- Proof


## Elliptic Curve Cryptography

- Brief Math Background
- ECDSA

Advanced Properties for Signatures

- Group Signatures
- Blind Signature
- Application: Untraceable eCash

Secure Instant Messaging Post Quantum Cryptography The Birthday Paradox

## ECDSA - Background on Elliptic Curve Cryptography

$$
y^{2}=x^{3}-x+1 \bmod 97
$$



Elliptic curves have a group structure

## ECDSA - Algorithms

```
KeyGen (sec.par) \(\Rightarrow\) (sk, pk)
    \(\mathrm{d} \leftarrow \$-[0\). .. \(\mathrm{n}-1\) ]
    sk \(=\) d
    \(\mathrm{pk}=\mathrm{Q}=\mathrm{d} * \mathrm{G}\)
```

```
Sign (sk, msg) \(\Rightarrow\) sgn
```

Sign (sk, msg) $\Rightarrow$ sgn
$\mathrm{k} \leftarrow \$-[0 \quad \ldots \mathrm{n}-1]$
$\mathrm{k} \leftarrow \$-[0 \quad \ldots \mathrm{n}-1]$
$\mathrm{R}=\mathrm{k} * \mathrm{G}$
$\mathrm{R}=\mathrm{k} * \mathrm{G}$
$r=R \_x \bmod n$
$r=R \_x \bmod n$
$z=$ sha256(msg)
$z=$ sha256(msg)
$\mathrm{s}=\operatorname{inv}(\mathrm{k}) \cdot(\mathrm{z}+\mathrm{d} \cdot \mathrm{r}) \bmod \mathrm{n}$
$\mathrm{s}=\operatorname{inv}(\mathrm{k}) \cdot(\mathrm{z}+\mathrm{d} \cdot \mathrm{r}) \bmod \mathrm{n}$
$\operatorname{sgn}=(r, s)$

```
    \(\operatorname{sgn}=(r, s)\)
```

Verify (pk, msg, $\operatorname{sgn}) \Rightarrow\{0,1\}$

```
z = sha256(msg)
T = [z.inv(s) mod n]*G
P = [inv(s)\cdotr mod n]*Q
if R == T+P return 1
else return 0
```



## ECDSA - the Good

* Shorter keys and better security than the RSA signature scheme
* Non malleable
* IoT friendly
* In wide adoption (TLS, DigiCert (Symantec), Sectigo (Comodo) ... )


## ECDSA - the Bad

## PS3 hacked through poor cryptography

 implementationrepeated nonce attack Bonus 2
A group of hackers named failOverflow revealed in a presentation how they
CASEY JOHNSTON - 12/30/2010, 6:25 PM
(0) what happens if the same nonce $k$ is used to sign two different messages?

```
k \leftarrow$- [0 ... n-1]
R = k*G
r = R_x mod n
z = sha256(msg)
s = inv(k)\cdot(z + d•r) mod n
```

\{* SECURITY *\}

## Android bug batters Bitcoin wallets

Old flaw, new problem

What now?
EdDSA

LadderLeak: Side-channel security flaws exploited to break ECDSA cryptography

Charlie Osborne 28 May 2020 at 14:07 UTC
Updated: 28 June 2021 at 09:05 UTC

## Advanced Properties for Digital Signatures

Attribute-Based Signatures
Group Signatures
Forward Secure Signatures
Threshold Signatures
Identity-Based Signatures
Ring Signatures
Homomorphic Signatures

Functional Signatures Structure Preserving Signatures

Proxy Signatures
Redactable Signatures
Multi Signatures
Sequential Signatures

## Module 2: Agenda

OW(Trapdoor)Functions
DH Key-Exchange
DL, CDH, DHH
Number Theory
RSA, EIGamal Cryptosystems
IND-CPA and IND-CCA

Digital Signatures

- Problem Statement
- Syntax
- RSA Signatures
- The Hash-and-Sign Paradigm
- Proof

Elliptic Curve Cryptography

- Brief Math Background
- ECDSA

Advanced Properties for Signatures

- Group Signatures
- Blind Signature
- Application: Untraceable eCash

Secure Instant Messaging Post Quantum Cryptography The Birthday Paradox

## Group Signatures

## Group Signatures



Figure 1.1.: Static Group Signatures


## Blind Signatures

## Definition: Blind Signature

A blind signature scheme is a signature scheme where the signing algorithm algorithms Sign is replaced by an interactive protocol run between a signer/issuer ( S ) and a receiver ( R ).

The protocol starts with R who has as input a message $m$, and $S$ who has as input a secret key sk.

At the end of the interaction R obtains a signature $\sigma$ on $m$, and $S$ learns nothing about $m$ or $\sigma$.

(3) where can this be useful?
untraceable electronic payment system attribute-based credentials [ABC, lecture 12 by Victor]

## Chaum's Untraceable eCash System



1. Only the Bank can generate eCoins

Property Wishlist
2. Users cannot double spend eCoins (money cloning)
3. eCoins should be untraceable, like physical cash

## 1. How To Make Sure Only the Bank Creates eCoins?



Solution: eCoin is a bit string together with a digital signature generated using the Bank's sk unforgeability ensures that $\mathscr{A}$ cannot generate eCoins

## 2. How To Prevent Double Spending?

## Easy option:

report to the bank every eCoin ever spent (upon payment the eCoin looses its © does value, the bank produces a new eCoin of the appropriate value for the seller) this work?

## A better option:

remove buyer anonymity only if (s)he attempts to double spend a eCoin (blind signatures)

## 2\&3 Prevent Double Spending and Keep eCoins Untraceable

Aim: the Bank should be able to sign an eCoin, without knowing what eCoin it is The eCoin withdrawal procedure with RSA (blind) signatures


Alice

```
pick a random
```

$B=r^{e} H(x) \bmod n$
extract signature for $x$
$T S=r^{-1} \bar{S} \bmod n$
(3) is S a valid
signature?
$S$ is a valid signature for $x$, and the Bank has never seen $x$ or $H(x)$ !

## 2\&3 Prevent Double Spending and Keep eCoins Untraceable

Spending and Redeeming eCoins

I want to spend
eCoin $x$

Alice

$$
\text { eCoin } x
$$

$S=r^{-1} \bar{S} \bmod n$
(3) this approach is not practical, why?



Bank


## A Better Untraceable eCash Protocol - Withdrawal

Aim: Alice looses her anonymity ( $I D_{A}$ gets disclosed) if and only if she tries to spend the same coin twice

pick $2 k$ 4-tuples of random numbers:

$$
\left\{a_{i}, b_{i}, c_{i}, r_{i}\right\}_{i=1}^{2 k}
$$

let: $x_{i}=h\left(a_{i}, b_{i}\right)$

$$
y_{i}=h\left(a_{i} \oplus I D_{A}, c_{i}\right)
$$

compute:
$B_{i}=r_{i}^{e} h\left(x_{i}, y_{i}\right) \bmod n$
reveal the asked values
extract a signature $S$ for
the coin $x=\Pi_{i \notin l} h\left(x_{i}, y_{i}\right)$ :

$$
S=r^{-1} \bar{S} \bmod n
$$


probabilistically verify
that Alice has put her
identity in every blinded
value using the Cut-and-
Choose technique
pick $k$ random indexes:

$$
I=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}
$$

re-compute the $B_{\text {s }}$ for $i \in I$
and check that they
contain $I D_{A}$. If Alice did
not cheat, sign the
blind value on the
unblinded indexes:

$$
\bar{S}=\left(\Pi_{i \notin I} B_{i}\right)^{d} \quad \bmod n
$$

## A Better Untraceable eCash Protocol - Spending


if Alice tries to spend the same coin twice then with high probability $Z \neq Z^{\prime}$ so
$\exists j, z_{j}=0, z_{j}^{\prime}=1$

$R_{j} \oplus R_{j}^{\prime}=a_{j} \oplus I D_{A} \oplus a_{j}=I D_{A} \quad \Rightarrow$ Alice looses her anonymity to the Bank

