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These slides were updated after the lecture. We fixed some typos and added a few new slides (marked
with † in the title).
Recommended reading for this lecture:

• Boneh & Shoup, A Graduage Couse in Applied Cryptography:
sections 11.2, 11.3, 1.5, 12.1, 12.2, 12.6.2.

• Golwasser & Bellare, Lecture Notes on Cryptography:
sections 7.1, 7.2.2, 7.2.3.
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Announcements

• Today is the deadline for assignment Bonus-1.
• Last Wednesday we fixed an error in HA2.

Make sure the PDF you’re reading is up to date.
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Agenda

Last Tuesday, you’ve seen:

• Trapdoor One-Way Functions
• Diffie-Hellman Key Exchange

• Group Theory
• Hardness Assumptions

(DLog, CDH, DDH)
• Bit Security of DH Keys

• Digital Signatures

Plan for today:

• Public-Key Encryption
• RSA
• ElGamal
• Security Definitions

IND-CPA, IND-CCA

• Homomorphic Encryption
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Symmetric Key Distribution Issue

How many keys do we need so everyone can
talk to each other?

Duck

Bob

Santa

Alice

Carol

𝑘1

𝑘2

𝑘3

𝑘4

𝑘5

𝑘6

𝑘7

• 4 keys for Bob + 3 keys for
Alice + 2 keys for …

• 𝑛(𝑛−1)
2 keys for 𝑛 parties

• Public-Key Encryption, on
the other hand, solves this
with only 𝑛 keys!
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Public-Key Encryption

Public-Key Encryption

A Public-Key Encryption is (KeyGen,Enc,Dec),
three probabilistic poly-time algorithms (PPT) s.t.

• (pk, sk) ← KeyGen(1𝑛) is key generation,
produces secret key and public key

• 𝑐 ← Enc(pk, 𝑚) is encryption
• 𝑚′ = Dec(sk, 𝑐) is decryption

Notation: 𝑚 ∈ ℳ, 𝑐 ∈ 𝒞.
Correctness property: 𝑚 = 𝑚′.

Trapdoor One-Way Function

Three algorithmsa (KeyGen, F, I) s.t.
• (pk, sk) ← KeyGen(1𝑛)
• 𝑦 = F(pk, 𝑥)
• 𝑥′ = I(sk, 𝑦)

It’s guarranteed that F(pk, 𝑥′) = 𝑦,
but not guarranteed that 𝑥 = 𝑥′.

What’s the difference?
aKeyGen is probabilistic, other two are

deterministic
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Why should I care about Trapdoor One-Way Functions?

Simpler than other constructions. Help cryptographers analyze cryptographic
assumptions.

Public-Key
Encryption

Trapdoor One-Way
Function

Signature
Scheme

Collision-Resistant
Hash Function

Secret-Key
Encryption

One-Way
Function

⋆

⋆ true with some caveats; Elena will present this next week
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Recap: Encrypting a Message with Diffie-Hellman

Establish a key + transmit a secret message

Alice Bob (has 𝑚 ∈ ℤ∗
𝑝)

𝑎←$ ℤ𝑞 ⧵{0} 𝑏←$ ℤ𝑞 ⧵{0}

𝐴 = 𝑔𝑎 𝐵 = 𝑔𝑏

𝛾 = 𝐵𝑎 𝛾 = 𝐴𝑏

𝑐 = 𝑚 ⋅ 𝛾

𝑚 = 𝑐 ⋅ 𝛾−1

𝐴

𝐵

𝑐

KeyGen

Enc

Dec

Parameters

• 𝑝 is a large prime
• 𝑔 is an element of ℤ∗

𝑝 which
generates a cyclic
(multiplicative) subgroup of
order 𝑞

In ElGamal terms…

• 𝑎 is Alice’s private key
• 𝐴 is Alice’s public key
• (𝐵, 𝑐) is the ciphertext that

encrypts Bob’s message 𝑚 for
Alice
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ElGamal, More Formally

KeyGen(1𝑛)

1 Pick 𝑝, 𝑔 and 𝑞 so that |𝑞| ≥ 𝑛
2 𝑎←$ ℤ𝑞 ⧵{0} // secret key

3 𝐴 = 𝑔𝑎 // public key

4 return (𝐴, 𝑎)

Dec𝑎((𝐵, 𝑐))

1 𝛾 = 𝐵𝑎

2 return 𝑐 ⋅ 𝛾−1

Enc𝐴(𝑚)

1 𝑏←$ ℤ𝑞 ⧵{0}

2 𝐵 = 𝑔𝑏

3 𝛾 = 𝐴𝑏

4 𝑐 = 𝛾 ⋅ 𝑚
5 return (𝐵, 𝑐)
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Textbook RSA

KeyGen(1𝑛)

1 Pick 𝑛-bit long primes 𝑝 and 𝑞
2 𝑁 = 𝑝𝑞
3 Pick 𝑒 so that gcd(𝑒, Φ(𝑁 )) = 1
4 𝑑 = 𝑒−1 mod Φ(𝑁 )
5 pk = (𝑁 , 𝑒), sk = (𝑁 , 𝑑)
6 return (pk, sk)

Dec(𝑁 ,𝑑)(𝑐)

1 𝑚 = 𝑐𝑑 mod 𝑁
2 return 𝑚

Enc(𝑁 ,𝑒)(𝑚)

1 𝑐 = 𝑚𝑒 mod 𝑁
2 return 𝑐

Correctness

𝑐𝑑 mod 𝑁 = (𝑚𝑒)𝑑 mod 𝑁
= 𝑚 mod 𝑁
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Number Theory for RSA and ElGamal†

Euler’s Theorem
Let 𝑀 > 0 and 𝑥 ∈ ℤ∗

𝑀, then 𝑥Φ(𝑀) = 1 mod 𝑀.
Corollary: 𝑥Φ(𝑀)−1 = 𝑥−1 mod 𝑀.

Euler’s totient function Φ
• Φ(𝑀) is the number of values in ℤ𝑀 which are

co-prime with 𝑀. In other words, Φ(𝑀) = |ℤ∗
𝑀|.

• If we know that 𝑀 is a product of distinct
primes, 𝑀 = 𝑝1𝑝2 …𝑝𝑘, we can compute
Φ(𝑀) = (𝑝1 − 1)(𝑝2 − 1)… (𝑝𝑘 − 1).

• For example, Φ(𝑝) = 𝑝 − 1 and
Φ(𝑝𝑞) = (𝑝 − 1)(𝑞 − 1) when 𝑝 and 𝑞 are primes.

Bézout’s identity

Let 𝑥 and 𝑦 be positive integers, and 𝑑 = gcd(𝑥, 𝑦).
Then there exist integers (possibly negative) 𝑎 and 𝑏
such that 𝑥𝑎 + 𝑦𝑏 = 𝑑.

Extended Euclidean Algorithm

The coefficients 𝑎 and 𝑏 can be computed by given 𝑥
and 𝑦 using Extended Euclidean Algorithma.

aSee the lecture notes, as well as
https://en.wikipedia.org/wiki/Extended_
Euclidean_algorithm
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Finding multiplicative inverses modulo†

Suppose we are given 𝑀 and 𝑥 ∈ ℤ∗
𝑀. We want to find 𝑥−1 s.t. 𝑥−1 ⋅ 𝑥 = 1 mod 𝑀. This is needed, for

example, to find 𝑑 in RSA, and also in ElGamal to invert 𝛾. How do we do this?

When we can factorize M
• Works in ElGamal, where 𝑀 = 𝑝 is prime.
• Use Euler’s Theorem:

𝛾−1 = 𝛾Φ(𝑝)−1 = 𝛾𝑝−2 mod 𝑝.

• Together with Binary Exponentiation algorithm.

# R e t u r n s ( x ∗ ∗ power ) % m
def exp ( x , power , m) :

i f power == 0 :
return 1

e l se i f power % 2 == 0 :
return exp ( x , power / / 2 , m) ∗ ∗ 2 % m

e l se
return x ∗ exp ( x , power − 1 , m) % m

When we can’t factorize 𝑀
• We can’t apply the Euler’s Theorem trick to RSA: we

have 𝑥 = 𝑒 and 𝑀 = Φ(𝑁) = (𝑝 − 1)(𝑞 − 1).
Computing Φ((𝑝 − 1)(𝑞 − 1)) requires factorizing
(𝑝 − 1)(𝑞 − 1) and we don’t know how to do that.

• In this case we will have to use Bézout’s identity, and
Extended Euclidean Algorithm…

Back to Bézout…
We know that gcd(𝑥,𝑀) = 1. Bézout identity tells us that
there exist 𝑎 and 𝑏 s.t. 𝑥𝑎 + 𝑀𝑏 = 1. Then 𝑥𝑎 + 𝑀𝑏
mod 𝑀 = 𝑥𝑎 mod 𝑀 = 1 mod 𝑀. So 𝑎 = 𝑥−1 mod 𝑀.

• Use Extended Euclidean Algorithm to find 𝑎 and 𝑏,
return 𝑎 = 𝑥−1.
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Security Notions: IND-CPA

IND-CPA Game
Challenger Adversary

(pk, sk) ← KeyGen(1𝑛)

pick 𝑚0, 𝑚1 ∈ ℳ

𝑏←${0, 1}

𝑐 ← Encpk(𝑚𝑏)

𝑏 = 𝑏′? pick 𝑏′

pk

𝑚0,𝑚1

𝑐

𝑏

Adversary wins if 𝑏 = 𝑏′.

Definition
(KeyGen,Enc,Dec) is Indistinguishable
under Chosen-Plaintext Attack (IND-CPA)
if

Pr[𝑏 = 𝑏′] = 1/2 + negl(𝑛).

Remarks

• Since Adversary knows the pk, it can
encrypt any messages of its choice at
any time.

• Deterministic encryption can’t be
IND-CPA secure. Why?
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Security Notions: IND-CCA

IND-CCA Game
Challenger Adversary

(pk, sk) ← KeyGen(1𝑛)

pick 𝑚0, 𝑚1 ∈ ℳ

𝑏←${0, 1}

𝑐 ← Encpk(𝑚𝑏)

𝑘𝑒𝑘
𝑘𝑎𝑘

𝑏 = 𝑏′? pick 𝑏′

pk

𝑚0,𝑚1

𝑐

𝑏

(Adv. has access to Decryption Oracle, Decsk(⋅))

(Adv. has access to Decryption Oracle, Decsk(⋅), but not

allowed to decrypt the challenge ciphertext 𝑐)

Adversary wins if 𝑏 = 𝑏′.

Definition
(KeyGen,Enc,Dec) is Indistinguishable
under Chosen-Ciphertext Attack
(IND-CCA) if

Pr[𝑏 = 𝑏′] = 1/2 + negl(𝑛).

Remarks

• Since Adversary knows the pk, it can
encrypt any messages of its choice at
any time.

• Maleable encryption can’t be
IND-CCA secure. Why?
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RSA Optimal Asymmetric Encryption Padding, AOEP

Being IND-CCA secure requires both non-maleability, and randomized encryption.
AOEP padding ensures both.

Encoding

• L = public label
• Seed = random seed
• MGF is a special pseudorandom

Mask Generation Function

RSA-AOEP is proven to be IND-CCA
secure (in the Random Oracle model)

Encoding Diagram
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Homomorphic Encryption

Linearly Homomorphic Encryption (LHE)

Public-key encryption (KeyGen,Enc,Dec) with
additional algorithms ⊕pk and ⊙pk:

• Encpk(𝑎) ⊕pk Encpk(𝑏) = Encpk(𝑎 + 𝑏)
• Encpk(𝑎) ⊙pk 𝑏 = Encpk(𝑎𝑏)

Can’t multiply two ciphertexts (note that 𝑏
is given in plain).

The plaintexts here are interpreted as numbers
{0, 1, …𝑀 − 1} with arithmetic operations on
them performed modulo 𝑀. 𝑀 is defined by pk.

Fully Homomorphic Encryption
(FHE)

Same as LHE, but now:
• Encpk(𝑎) ⊕pk Encpk(𝑏) =
Encpk(𝑎 + 𝑏)

• Encpk(𝑎)⊙pkEncpk(𝑏) = Encpk(𝑎𝑏)
Now we can multiply ciphertexts!

FHE schemes often involve heavy
computations and large ciphertexts,
which limit their applicability.

Both LHE and FHE are maleable, so they can’t be IND-CCA secure.
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LHE: Familiar Examples

ElGamal

• Let (𝐵1, 𝑐1) encrypt 𝑚1 with key 𝐴
• Let (𝐵2, 𝑐2) encrypt 𝑚2 with key 𝐴
• Suppose Alice is decrypting
(𝐵1 ⋅ 𝐵2, 𝑐1 ⋅ 𝑐2) with her private key 𝑎:

𝛾 = (𝐵1𝐵2)𝑎

= 𝐵𝑎1 ⋅ 𝐵𝑎2
𝑚 = 𝑐1𝑐2 ⋅ 𝛾−1

= (𝑐1𝐵−𝑎1 )(𝑐2𝐵−𝑎2 )
= 𝑚1𝑚2

Textbook RSA

• Let 𝑚𝑒
1 and 𝑚𝑒

2 be RSA ciphertexts,
encrypted for Alice whose private keys
is (𝑑, 𝑁 )

• Let’s see what happens if Alice
decrypts 𝑚𝑒

1𝑚𝑒
2:

𝑚 = (𝑚𝑒
1𝑚𝑒

2)𝑑

= (𝑚1 ⋅ 𝑚2)𝑒𝑑

= 𝑚1𝑚2

Why is it linear even though 𝑚1 and 𝑚2 got multiplied?
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More on Homomorphic Encryption†

Why ElGamal and RSA are only
Linearly Homomorphic?
As we’ve shown on the previous slide, ElGamal and RSA
allow multiplying encryptions. We still call them Linearly
Homomorphic schemes because the multiplications of
numbers there correspond to the group operation, and from
group’s perspective it can be seen as “addition”. Applying
this group operation repeatedly would correspond to
“multiplication” in group terms.

• For ElGamal, the group is (𝑍 ∗
𝑝 , ⋆) with

𝑚1 ⋆ 𝑚2 = 𝑚1 ⋅ 𝑚2 mod 𝑝.
• For RSA, the group is (𝑍 ∗

𝑁, ⋆) with 𝑚1 ⋆ 𝑚2 = 𝑚1 ⋅ 𝑚2
mod 𝑁.

These encryption schemes would be Fully Homomorphic if
they allowed by given Encpk(𝑚1) and Encpk(𝑚1) computing
Encpk(𝑚1 ⋆ 𝑚1 ⋆ ⋯ ⋆ 𝑚1⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵

𝑚2 times

), which is “multiplication” from

group’s perspective.

Uses of Homomorphic Encryption

LHE and FHE can be used to “outsource”
computations to an untrusted party.

• To implement a cloud that can process
people’s private data without being
able to peek on the data.

• To implement some form of
Multi-Party Computation where
parties jointly perform operations on
their data without anyone of them
being able to see the data they’re
operating on. (We’ll dicsuss this more
in Lecture 9.)
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Self-check questions

1 How to exchange (symmetric) keys using Public-Key Encryption?
(We built ElGamal from Diffie-Hellman key exchange. This question asks if one
could go the other way.)

2 What property of Diffie-Hellman actually helped us convert it to ElGamal
cryptosystem? Could one do the same with any key exchange protocol?

3 How to make Trapdoor One-Way Function from Public-Key Encryption (using it as
blackbox)?
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Copyright & Attribution

• The RSA-OAEP Encoding Diagram was taken from Wikipedia1 and used under
Creative Commons.

• People icons in diagrams were taken from tikzpeople LATEX package2

• Font used is Libertinus Sans.

1https://en.wikipedia.org/wiki/Optimal_asymmetric_encryption_padding
2https://www.ctan.org/pkg/tikzpeople
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