
CRYPTOGRAPHY
(lecture 5)

Literature:
“Handbook of Applied Cryptography” (ch 3.6, 3.7, 3.9.1)
“Lecture Notes on Cryptography” by Goldwasser and Bellare (ch 11.1, 10.1, 10.3.1)

“A Graduate Course in Applied Cryptography” (ch 10.2.0, 10.4, 10.5-10.5.1, 13.1)

“Lecture Notes on Introduction to Cryptography” by V. Goyal (ch 6)
If you like cryptography, you should ready this paper once in your lifetime: [DH76]

Background on Number Theory (available on Canvas)

https://cacr.uwaterloo.ca/hac/
https://cseweb.ucsd.edu/~mihir/papers/gb.pdf
https://toc.cryptobook.us/
https://www.cs.cmu.edu/~goyal/15356/lecture_notes.pdf
https://ee.stanford.edu/~hellman/publications/24.pdf

Announcements

2

๏ Deadline for submitting first draft of HA1 TODAY (end of the day)

๏ This Friday’s lecture will be given by Ivan!

๏ If you have questions / doubts about HA1 come to me at the end of this lecture

…Back in Module 1…

3

𝒜

message
k k

๏ Perfectly secure encryption (OTP)

๏ Semantically secure encryption (PRG)

๏ IND-CPA secure encryption (AES, Block Ciphers)

๏ Integrity (MAC, AEAD)

Introduction to Public Key Cryptography
• The Core Idea

• One-Way Trapdoor Functions

Key-Exchange
• Problem Statement

• A Simple Solution

• Formalisation: Group Theory

• Diffie-Hellman Key Exchange (DH)

(Some) Hardness Assumptions
• DLog, CDH, DDH

• Reductions Between Problems

Module 2: Agenda

Public Key Encryption
Much More on Digital Signatures
Secure Instant Messaging
Post Quantum Cryptography

More on DH
• On the Bit Security of DH Keys

• Securing DH Keys

• Choosing Good Parameters

• MiM Attack

Digital Signatures
• Problem Statement

• Syntax

• ECDSA

5

The One Fundamental Concept in Public Key Cryptography (PKC)

6

This is a hard problem

[the problem is solvable,
but solving it requires
time proportional to the
age of our universe]

..unless..
… you know some additional
information that makes
solving the problem easy!
(trapdoor)

🧐 What does “hard”
mean in cryptography?

PKC is all about this ‘efficiency gap’ in solving a mathematical problem + to
ns

 o
f r

an
do

m
ne

ss

One-Way Trapdoor Function

Definition: ONE-WAY TRAPDOOR FUNCTION (SCHEME)

A trapdoor function scheme defined over two finite sets

is a triple of PPT algorithms defined as follows:

๏ is a probabilistic key generation algorithm

๏ For every pk output by KeyGen, is a deterministic algorithm ()

๏ For every sk output by KeyGen, is a deterministic algorithm ()

AND it holds that: for all keys generated by KeyGen and for all input .

X, Y
(KeyGen, F, I)

KeyGen(n) → (𝗉𝗄, 𝗌𝗄)

F(𝗉𝗄, ⋅) : X → Y F(𝗉𝗄, x) = y

I(𝗌𝗄, ⋅) : Y → X I(𝗌𝗄, y′￼) = x′￼

I(𝗌𝗄, F(𝗉𝗄, x)) = x x ∈ X

7

x

y=H(x)
x’

easy

hard

{0,1}n

{0,1}d, d < n

inverting becomes
easy for whoever

knows the
trapdoor

sk is the trapdoor

One-Way Trapdoor Function - Security

8

𝒞

𝒜
KeyGen(n) → (𝗉𝗄, 𝗌𝗄)

x ← $X

F(𝗉𝗄, x) = y

x*

(𝗉𝗄, y)

win or lose wins the game if . If , loses.

A scheme is one-way trapdoor if for any PPT
adversary it holds that:

𝒜 x* = x x* ≠ x 𝒜
(KeyGen, F, I)

𝒜 Adv(𝒜) = Pr[𝒜 wins] < negl(n)

This security game models the “one-way” property
The condition (from the previous slide) models the “trapdoor” propertyI(𝗌𝗄, F(𝗉𝗄, x)) = x

(KeyGen, F, I)

An Example: RSA as a One-Way Trapdoor Function

9

๏ : Pick two large primes p,q (think 1024-bit long).

 Pick a random e , compute its inverse d mod ɸ(N).  
 Set pk=(N,e) and sk=(p,q,d)

๏ : given x , return y = xe mod N

๏ : given y , return x = yd mod N

KeyGen(n) → (𝗉𝗄, 𝗌𝗄)
← $ℤ*N

F(𝗉𝗄, ⋅) : ℤN → ℤN ∈ ℤN

I(𝗌𝗄, ⋅) : ℤN → ℤN ∈ ℤN

Introduction to Public Key Cryptography
• The Core Idea

• One-Way Trapdoor Functions

Key-Exchange
• Problem Statement

• A Simple Solution

• Formalisation: Group Theory

• Diffie-Hellman Key Exchange (DH)

(Some) Hardness Assumptions
• DLog, CDH, DDH

• Reductions Between Problems

Module 2: Agenda

Public Key Encryption
Much More on Digital Signatures
Secure Instant Messaging
Post Quantum Cryptography

More on DH
• On the Bit Security of DH Keys

• Securing DH Keys

• Choosing Good Parameters

• MiM Attack

Digital Signatures
• Problem Statement

• Syntax

• ECDSA

10

Problem Statement

11

𝒜

Alice and Bob want to find a way to share a secret key without
relying on a previously shared secret AND they want to do so,
using a public channel, that is monitored* by the Adversary

k

*For the sake of this lecture, we only consider passive (eavesdropper)𝒜

Tool: Exponentiation gx

A Simple Solution

12

Pick a number g
Pick another number a

Compute the exponentiation
A = ga (g, A) Pick a number b

Compute B = gb B
Compute the shared secret

K = Ba
🧐

Why is K the same for both?

🧐 What prevents from learning K given (g,A,B)?𝒜

Compute the shared secret
K = Ab

In theory (=unconditionally) nothing!

In practice, this challenge is (computationally) hard to solve, if you work in the correct domain

 Let’s get formal!

A First Attempt

14

g is a prime number and the exponents, a,b, are large positive integers

30226801971775055948247051683954096612865741943 = 7?

This approach could work, but there is no upper limit on how large A,B,K may become.

Moreover, if we want to use K for a symmetric encryption scheme, K needs to be
encoded into an n-bit string, for some fixed value n.

WANTED: a mathematical object that allows us to do arbitrary exponentiations
while guaranteeing the values we get stay within a certain range.

(Cyclic) Group

15

ℤ12
mod n

3 + 5 = ? mod 7 35 = ? mod 7

Cyclic Group

16

Definition: Cyclic Group

A group is a finite set of elements (usually also
denoted at) together with an operation , that is, a
function : with the following properties:

1. Closure: for all it holds that

2. Associativity: for all it holds that

3. Identity: There exists an element such that

 for all

4. Inverse: for every there exists a (unique!)
element such that .

A cyclic group, is a group for which there exists at
least one element that generates the whole
group: , is
called generator.

𝔾
𝔾 ⋆

⋆ 𝔾 × 𝔾 → 𝔾
g, h ∈ 𝔾 g ⋆ h ∈ 𝔾

g, h, k ∈ 𝔾
(g ⋆ h) ⋆ k = g ⋆ (h ⋆ k)

e ∈ 𝔾
e ⋆ g = g ⋆ e = g g ∈ 𝔾

g ∈ 𝔾
ḡ ∈ 𝔾 g ⋆ ḡ = e

g ∈ 𝔾
⟨g⟩ = {g, g ⋆ g, g ⋆ g ⋆ g, . . . } = 𝔾 g

Think

𝔾 = (ℤp, +)
ℤp = {0,1,…, p − 1}
g ⋆ h = g + h mod p

p-2

p-1 1

0

A Closer Look at = (, +), With a Large Prime Numberℤp ℤp p

17

ℤp = {0,1,…, p − 1}

 all elements in that have a multiplicative inverseℤ*p = {1,…, p − 1} ℤp

Has cardinality p-1 (which is for sure divisible by 2
and at least one more prime number)

Consider the group equipped with multiplication. This group has a funky
structure that you will study in Home Assignment 2

ℤ*p = (ℤ*p , ⋅)

Let (decomposition in prime factors)

Then contains cyclic sub-groups of order

p − 1 = ∏qαi
i

ℤ*p q1, q2
1 , …, qα1

1 , q2, …,

the smallest positive integer
 such that: in .n gn = 1 𝔾

The Diffie-Hellman Key Exchange Protocol

18

Setting

a ← $ℤq ∖ {0}
Compute A = ga mod p A b ← $ℤq ∖ {0}

Compute B = gb mod p
B

Compute the shared
secret K = Ba

Compute the shared
secret K = Ab

Security

For this protocol to be secure it is necessary that the values are not obtainable from a, b A, B

Let be a large prime (2048-bits long). Find a generator of a subgroup of
prime order in . Let be all public information.

p g
q ℤ*p p, q, g

Introduction to Public Key Cryptography
• The Core Idea

• One-Way Trapdoor Functions

Key-Exchange
• Problem Statement

• A Simple Solution

• Formalisation: Group Theory

• Diffie-Hellman Key Exchange (DH)

(Some) Hardness Assumptions
• DLog, CDH, DDH

• Reductions Between Problems

Module 2: Agenda

Public Key Encryption
Much More on Digital Signatures
Secure Instant Messaging
Post Quantum Cryptography

More on DH
• On the Bit Security of DH Keys

• Securing DH Keys

• Choosing Good Parameters

• MiM Attack

Digital Signatures
• Problem Statement

• Syntax

• ECDSA

19

The Discrete Logarithm Assumption (DL, DLog or dLog)

20

Let be cyclic group of order (where is a -bit long prime) and be a generator of .

The discrete logarithm assumption states that it is computationally infeasible for any
efficient attacker to find the exponent such that for a random .

Formally:

𝔾 q q n g 𝔾

x gx = h h ∈ 𝔾
Pr[x* = x |x ← $ℤq, x* ← 𝒜(q, g, gx)] < negl(n)

This is an assumption: it cannot be proven!

Decades of cryptanalysis and scrutiny by the cryptographic community world-wide
has make us gain confidence that this assumption is true, for large enough primes

Is This Enough?

21

Formally: Pr[x* = x |x ← $ℤq, x* ← 𝒜(q, g, gx)] < negl(n)

..it may still be possible for to compute combining and without learning ..𝒜 K A, B a, b

a ← $ℤq

Compute A = ga mod p A b ← $ℤq

Compute B = gb mod p
B

Compute the shared
secret K = Ba

Compute the shared
secret K = Ab

The Computational Diffie-Hellman Assumption (CDH)

22

Let be cyclic group of order (where is a -bit long prime) and be a generator of .

The computational Diffie-Hellman assumption states that it is computationally
infeasible for any efficient attacker to find given .

Formally:

𝔾 q q n g 𝔾

gab g, ga, gb

Pr[k* = gab |a, b ← $ℤq, k* ← 𝒜(g, ga, gb)] < negl(n)

Note: if DLog is easy, then DH is easy.

But: if DH is easy, is it true that DLog is also easy? This is an open question in cryptography.

 Why Do We Need
Assumptions in
Cryptography?

Hardness
Assumption

The Flow Chart of How Cryptographic Scheme Are Born

24

Math object Problem Computational
Security

Construction

Which Problem Is Harder/Easier?

25

Let A and B be two computational problems. 
A is said to efficiently (in polynomial time) reduce to B, written A ≤ B if:

๏ There is an algorithm which solves A using an algorithm which solves B.

๏ This algorithm runs in polynomial time if the algorithm for B does.

Proof structure: build a reduction (sequence of steps, program)

๏ Assume we have an oracle (or efficient algorithm) to solve problem B.

๏ We then use this oracle to give an efficient algorithm for problem A.

Three Problems

26

… And Their Relations

Discrete Logarithm Problem (DLP):
Given find such that .h ∈ 𝔾 x h = gx

Computational DH Problem (CDH):
Given and find a = gx b = gy c = gxy

Decisional DH Problem (CDH):
Given , and ,
determine if .

a = gx b = gy c = gz

gxy = gz

≤

Given

Use the DLog oracle to compute

Compute the CDH solution:

⇒ CDH is no harder than DLP, i.e. CDH ≤ DLP

(g, a, b) ∈ 𝔾3

y = dLogg(b)
(a)y = gxy

≤ Given

Use the CDH oracle to compute

Check whether

⇒ DDH is no harder than CDH, i.e. DDH ≤ CDH

(g, a, b, c) ∈ 𝔾4

gxy = DH(a, b)
c = gxy

For more info, check out this blog

http://bristolcrypto.blogspot.com/2014/12/52-things-number-11-what-are-dlp-cdh.html

Introduction to Public Key Cryptography
• The Core Idea

• One-Way Trapdoor Functions

Key-Exchange
• Problem Statement

• A Simple Solution

• Formalisation: Group Theory

• Diffie-Hellman Key Exchange (DH)

(Some) Hardness Assumptions
• DLog, CDH, DDH

• Reductions Between Problems

Module 2: Agenda

Public Key Encryption
Much More on Digital Signatures
Secure Instant Messaging
Post Quantum Cryptography

More on DH
• On the Bit Security of DH Keys

• Securing DH Keys

• Choosing Good Parameters

• MiM Attack

Digital Signatures
• Problem Statement

• Syntax

• ECDSA

27

On the Bit Security of Plain DH Keys (and DLog Problem)

28

a ← $ℤq

Compute A = ga mod p A b ← $ℤq

Compute B = gb mod p
B

Compute the shared
secret K = Ba

Compute the shared
secret K = Ab

“Hardness of Distinguishing the MSB or LSB of Secret Keys in Diffie-Hellman Schemes” [FPSZ06]

it is (computationally) easy to find the least significant bit (LSB) of KBad news:
 is even iff is quadratic residue in dLogg(K) K ℤ*p

Worse news: It is easy to compute the LSBs or MSBs of when , with odd.s K p − 1 = 2s ⋅ q q

https://www.di.ens.fr/~stern/data/St115.pdf

Securing DH Keys

29

Finding some bits (aka hard-core bits) is as hard as computing the whole dLogGood news:
e.g. computing the -th LSB or MSB of , when , with odd is hards + 1 K p − 1 = 2s ⋅ q q

Even better news: Heuristics show that provides a good cryptographic key
if is a cryptographic hash function

H(K)
H : {0,1}|p| → {0,1}256

+ there are several ways to boost security for DH and dLog

Triple Diffie-Hellman (X3DH)

 is made of points on an elliptic curve𝔾

https://signal.org/docs/specifications/x3dh/
https://en.wikipedia.org/wiki/Elliptic-curve_cryptography

Choosing Parameters

30

Setting Let be a large prime (2048-bits long). Find a generator of a subgroup of
prime order in . Let be all public information.

p g
q ℤ*p p, q, g

🧐 Why are we working in instead of (ℤq, ⋅) (ℤ*p . ⋅) Here denotes the operation
of the group (multiplication)

⋅

๏ We want to work with prime orders (should both be prime). This guarantees a
nice mathematical structure for computing exponentiations.

๏ Having lets us better balance security vs size of the exchanged messages:

๏ needs to be large enough for DLog to be hard.

๏ can be fairly small for efficient exponentiation, yet not too small as it upper

bounds the length of the key material we can derive.

๏ For realistic sizes today, we have bits and bits.

p, q

p ≠ q
p
q

|p | = 2048 |q | = 256

Man-in-the-Middle Attack Against the DH Key Exchange

31

𝒜

*For the sake of this lecture, we only consider passive (eavesdropper)𝒜

Alice and Bob want to find a way to share a secret key without
relying on a previously shared secret AND they want to do so,
using a public channel, that is monitored* by the Adversary

k

🧐 What goes bad if is active?𝒜

Man-in-the-Middle Attack Against the DH Key Exchange

32
DH does not authenticate whom you are doing a key exchange with🧐 What’s enabling this attack?

A

B*

a ← $ℤq

A = ga mod p b ← $ℤq

B = gb mod p

KB = (A*)b

𝒜
a* ← $ℤq

A* = ga* mod p
KB = Ba*

A*

B
b* ← $ℤq

B* = gb* mod p
KA = Ab*

KA = (B*)a

Authenticating the Source of Information Over the Internet

33

𝒜
k k

Problem: if both Alice and Bob know k, then cryptographically they are the same person.
Bob cannot convince a third party that it was Alice producing something (e.g. a MAC) for
that requires the knowledge of k. Whatever Alices produces, Bob can produce it as well!

𝒜
𝗌𝗄 𝗉𝗄

With public key cryptography Alice is the only one to know sk. If she uses it to do something
that is (computationally) impossible to do without sk, then everyone can be convinced she did it.

Digital Signature - Syntax

34

Definition: Digital Signature

A digital signature scheme is a triple of PPT algorithms defined as follows:

๏ is a probabilistic key generation algorithm

๏ is a (possibly) probabilistic algorithm that outputs a signature for a message

๏ 1 if is accepted as a valid signature for against , 0 (reject) otherwise.

(KeyGen, Sign, Ver)
KeyGen(n) → (𝗉𝗄, 𝗌𝗄)

Sign(𝗌𝗄, m) → σ σ m

Ver(𝗉𝗄, m, σ) = σ m 𝗉𝗄

Correctness

For all key pairs it holds that:
(𝗉𝗄, 𝗌𝗄) ← KeyGen(n) Ver(𝗉𝗄, m, Sign(𝗌𝗄, m)) = 1
Pr[Ver(𝗉𝗄, m, σ) = 1 |σ ← Sign(𝗌𝗄, m)] = 1

ECDSA - Background on Elliptic Curve Cryptography

35[gifs from arstechnica]

y2 = x3 + ax + b

Elliptic curves have a group structure

y2 = x3 − x + 1 mod 97

https://arstechnica.com/information-technology/2013/10/a-relatively-easy-to-understand-primer-on-elliptic-curve-cryptography/2/

ECDSA - Algorithms

36

KeyGen

Sign

Verify

z = sha256(msg)
T = [z·inv(s) mod n]*G
P = [inv(s)·r mod n]*Q
if R == T+P return 1
else return 0

(pk, msg, sgn) ⇨ {0, 1}

k ←$⎯ [0 ... n-1]
R = k*G
r = R_x mod n
z = sha256(msg)
s = inv(k)·(z + d·r) mod n
sgn = (r, s)

(sk, msg) ⇨ sgn

(sec.par) ⇨ (sk, pk)
d ←$⎯ [0 ... n-1]
sk = d
pk = Q = d*G

ECDSA - the Good

37

★ Shorter keys and better security than the RSA signature scheme

★ Non malleable

★ IoT friendly

★ In wide adoption (TLS, DigiCert (Symantec), Sectigo (Comodo) …)

ECDSA - the Bad

38

repeated nonce attack Bonus 2

ECDSA - What’s Next?

39

Post Quantum Secure Signatures

LBS signature

Schnorr signature

Threshold Signatures

