CRYPIOGRAPHY (lecture 5)

Literature:

"Handbook of Applied Cryptography" (ch 3.6, 3.7, 3.9.1) "Lecture Notes on Cryptography" by Goldwasser and Bellare (ch 11.1, 10.1, 10.3.1) "A Graduate Course in Applied Cryptography" (ch 10.2.0, 10.4, 10.5-10.5.1, 13.1) "Lecture Notes on Introduction to Cryptography" by V. Goyal (ch 6) If you like cryptography, you should ready this paper once in your lifetime: [DH76] **Background on Number Theory** (available on Canvas)

Announcements

- Deadline for submitting first draft of HA1 TODAY (end of the day) \bigcirc
- This Friday's lecture will be given by Ivan! \bigcirc
- \bigcirc

If you have questions / doubts about HA1 come to me at the end of this lecture

...Back in Module 1...

- Perfectly secure encryption (OTP)
- Semantically secure encryption (PRG)
- Integrity (MAC, AEAD)

IND-CPA secure encryption (AES, Block Ciphers)

I was here first!

Module 2: Agenda

Introduction to Public Key Cryptography

- The Core Idea
- One-Way Trapdoor Functions

Key-Exchange

- Problem Statement
- A Simple Solution
- Formalisation: Group Theory
- Diffie-Hellman Key Exchange (DH)

(Some) Hardness Assumptions

- DLog, CDH, DDH
- Reductions Between Problems

More on DH

- On the Bit Security of DH Keys
- Securing DH Keys
- Choosing Good Parameters
- MiM Attack

Digital Signatures

- Problem Statement
- Syntax
- ECDSA

Public Key Encryption Much More on Digital Signatures Secure Instant Messaging Post Quantum Cryptography

The One Fundamental Concept in Public Key Cryptography (PKC)

This is a **hard** problem ..unless..

What does "hard" mean in cryptography?

[the problem is solvable, but solving it requires time proportional to the age of our universe]

PKC is all about this 'efficiency gap' in solving a mathematical problem

... you know some additional information that makes solving the problem easy! (trapdoor)

One-Way Trapdoor Function

Definition: ONE-WAY TRAPDOOR FUNCTION (SCHEME)

A trapdoor function scheme defined over two finite sets X, Yis a triple of PPT algorithms (KeyGen, F, I) defined as follows:

- $KeyGen(n) \rightarrow (pk, sk)$ is a probabilistic key generation algorithm
- \bigcirc
- \bigcirc

AND it holds that: I(sk, F(pk, x)) = x for all keys generated by KeyGen and for all input $x \in X$.

sk is the trapdoor

For every **pk** output by KeyGen, $F(\mathsf{pk}, \cdot) : X \to Y$ is a deterministic algorithm ($F(\mathsf{pk}, x) = y$)

For every **sk** output by KeyGen, $I(sk, \cdot) : Y \to X$ is a deterministic algorithm (I(sk, y') = x')

One-Way Trapdoor Function - Security

The condition I(sk, F(pk, x)) = x (from the previous slide) models the "trapdoor" property

 \mathscr{A} wins the game if $x^* = x$. If $x^* \neq x$, \mathscr{A} loses.

A scheme (KeyGen, F, I) is **one-way trapdoor** if for any PPT

This security game models the "one-way" property

An Example: RSA as a One-Way Trapdoor Function

- ge primes p,q (think 1024-bit long).
- \mathbb{SZ}_{N}^{*} , compute its inverse d mod $\phi(N)$. x=(p,q,d)
- return **y** = **x**^e mod **N**
- return **x = y^d mod N**

Module 2: Agenda

Introduction to Public Key Cryptography

- The Core Idea
- One-Way Trapdoor Functions

Key-Exchange

- Problem Statement
- A Simple Solution
- Formalisation: Group Theory
- Diffie-Hellman Key Exchange (DH)

(Some) Hardness Assumptions

- DLog, CDH, DDH
- Reductions Between Problems

More on DH

- On the Bit Security of DH Keys
- Securing DH Keys
- Choosing Good Parameters
- MiM Attack

Digital Signatures

- Problem Statement
- Syntax
- ECDSA

Public Key Encryption Much More on Digital Signatures Secure Instant Messaging Post Quantum Cryptography

Problem Statement

Alice and Bob want to find a way to share a secret key k without relying on a previously shared secret **AND** they want to do so, using a public channel, that is monitored* by the Adversary

Tool: Exponentiation g^{χ}

*For the sake of this lecture, we only consider passive \mathscr{A} (eavesdropper)

11

A Simple Solution

Why is K the same for both?

W What prevents \mathscr{A} from learning K given (g,A,B)? In theory (=unconditionally) nothing! In practice, this challenge is (computationally) hard to solve, if you work in the correct domain

12

Let's get formal!

A First Attempt

g is a prime number and the exponents, a,b, are large positive integers

encoded into an *n*-bit string, for some **fixed** value *n*.

while guaranteeing the values we get stay within a certain range.

30226801971775055948247051683954096612865741943 = 7?

- This approach could work, but there is no upper limit on how large A, B, K may become.
- Moreover, if we want to use K for a symmetric encryption scheme, K needs to be

WANTED: a mathematical object that allows us to do arbitrary exponentiations

 \mathbb{Z}_{12}

$3 + 5 = ? \mod 7$

mod n

$3^5 = ? \mod 7$

Cyclic Group

Think
$$\mathbb{G} = (\mathbb{Z}_p, +)$$

 $\mathbb{Z}_p = \{0, 1, \dots, p - 1\}$
 $g \star h = g + h \mod p$

Definition: Cyclic Group

A group \mathbb{G} is a finite set of elements (usually also denoted at \mathbb{G}) together with an operation \star , that is, a function $\star: \mathbb{G} \times \mathbb{G} \to \mathbb{G}$ with the following properties:

1. **Closure**: for all $g, h \in \mathbb{G}$ it holds that $g \star h \in \mathbb{G}$

2. **Associativity**: for all $g, h, k \in \mathbb{G}$ it holds that

$$(g \star h) \star k = g \star (h \star k)$$

3. Identity: There exists an element $e \in \mathbb{G}$ such that

$$e \star g = g \star e = g$$
 for all $g \in \mathbb{G}$

4. **Inverse**: for every $g \in \mathbb{G}$ there exists a (unique!) element $\overline{g} \in \mathbb{G}$ such that $g \star \overline{g} = e$.

A cyclic group, is a group for which there exists at least one element $g \in \mathbb{G}$ that generates the whole group: $\langle g \rangle = \{g, g \star g, g \star g \star g, \dots\} = \mathbb{G}, g$ is called generator.

A Closer Look at $\mathbb{Z}_p = (\mathbb{Z}_p, +)$, With p a Large Prime Number

$$\mathbb{Z}_{p} = \{0, 1, \dots, p-1\} \qquad \text{Has cardinalised and at least of and at least of a strain } \mathbb{Z}_{p}^{*} = \{1, \dots, p-1\} \text{ all elements in } \mathbb{Z}_{p}^{*} \text{ that } \mathbb{Z}_{p}^{*} = \{1, \dots, p-1\} \text{ all elements in } \mathbb{Z}_{p}^{*} \text{ that } \mathbb{Z}_{p}^{*} \text{ th$$

Consider the group $\mathbb{Z}_p^* = (\mathbb{Z}_p^*, \cdot)$ equipped with multiplication. This group has a funky structure that you will study in Home Assignment 2

Let $p - 1 = \prod q_i^{\alpha_i}$ (decomposition in prime factors) Then \mathbb{Z}_p^* contains cyclic sub-groups of **ord**

ity **p-1** (which is for sure divisible by 2) one more prime number)

at have a multiplicative inverse

er
$$q_1, q_1^2, \dots, q_1^{\alpha_1}, q_2, \dots,$$

the smallest positive integer n such that: $g^n = 1$ in \mathbb{G} .

17

The Diffie-Hellman Key Exchange Protocol

Setting Let *p* be a large prime (2048-bits long). Find a generator *g* of a subgroup of prime order *q* in \mathbb{Z}_p^* . Let *p*, *q*, *g* be all public information.

Security

For this protocol to be secure it is necessary that the values *a*, *b* are not obtainable from *A*, *B*

Module 2: Agenda

Introduction to Public Key Cryptography

- The Core Idea
- One-Way Trapdoor Functions

Key-Exchange

- Problem Statement
- A Simple Solution
- Formalisation: Group Theory
- Diffie-Hellman Key Exchange (DH)

(Some) Hardness Assumptions

- DLog, CDH, DDH
- Reductions Between Problems

More on DH

- On the Bit Security of DH Keys
- Securing DH Keys
- Choosing Good Parameters
- MiM Attack

Digital Signatures

- Problem Statement
- Syntax
- ECDSA

Public Key Encryption Much More on Digital Signatures Secure Instant Messaging Post Quantum Cryptography

The Discrete Logarithm Assumption (DL, DLog or dLog)

Let \mathbb{G} be cyclic group of order q (where q is a n-bit long prime) and g be a generator of \mathbb{G} . The **discrete logarithm assumption** states that it is computationally infeasible for any efficient attacker to find the exponent x such that $g^x = h$ for a random $h \in \mathbb{G}$. Formally: $Pr[x^* = x | x \leftarrow \$\mathbb{Z}_q, x^* \leftarrow \mathscr{A}(q, g, g^x)] < negl(n)$

This is an **assumption**: it **cannot be proven**!

Decades of cryptanalysis and scrutiny by the cryptographic community world-wide has make us gain confidence that this assumption is true, for *large enough* primes

Is This Enough?

Formally:
$$Pr[x^* = x | x \leftarrow \$]$$

...it may still be possible for \mathscr{A} to compute *K* combining *A*, *B* and without learning *a*, *b*...

 $\mathbb{Z}_q, x^* \leftarrow \mathscr{A}(q, g, g^x)] < negl(n)$

The Computational Diffie-Hellman Assumption (CDH)

infeasible for any efficient attacker to find g^{ab} given g, g^a, g^b .

Note: if DLog is easy, then DH is easy. But: if DH is easy, is it true that DLog is also easy? This is an open question in cryptography.

- Let G be cyclic group of order q (where q is a n-bit long prime) and g be a generator of G. The computational Diffie-Hellman assumption states that it is computationally
 - Formally: $Pr[k^* = g^{ab} | a, b \leftarrow \$\mathbb{Z}_q, k^* \leftarrow \mathscr{A}(g, g^a, g^b)] < negl(n)$

Why Do We Need Assumptions in Cryptography?

The Flow Chart of How Cryptographic Scheme Are Born

Which Problem Is Harder/Easier?

Let A and B be two computational problems. A is said to **efficiently** (in polynomial time) **reduce** to B, written $A \leq B$ if: • There is an algorithm which solves A using an algorithm which solves B.

• This algorithm runs in polynomial time if the algorithm for B does.

Proof structure: build a **reduction** (sequence of steps, program)

• Assume we have an oracle (or efficient algorithm) to solve problem B.

• We then use this oracle to give an efficient algorithm for problem A.

Three Problems ... And Their Relations

Discrete Logarithm Problem (DLP): Given $h \in \mathbb{G}$ find x such that $h = g^x$.

\bigvee

Computational DH Problem (CDH):

Given $a = g^x$ and $b = g^y$ find $c = g^{xy}$

\bigvee

Decisional DH Problem (CDH):

Given $a = g^x$, $b = g^y$ and $c = g^z$, determine if $g^{xy} = g^z$. Given $(g, a, b) \in \mathbb{G}^3$ Use the DLog oracle to compute $y = dLog_g(b)$ Compute the CDH solution: $(a)^y = g^{xy}$ \Rightarrow CDH is no harder than DLP, i.e. CDH \leq DLP

- Given $(g, a, b, c) \in \mathbb{G}^4$
- Use the CDH oracle to compute $g^{xy} = DH(a, b)$
- Check whether $c = g^{xy}$
- \Rightarrow DDH is no harder than CDH, i.e. DDH \leq CDH

For more info, check out this blog

Module 2: Agenda

Introduction to Public Key Cryptography

- The Core Idea
- One-Way Trapdoor Functions

Key-Exchange

- Problem Statement
- A Simple Solution
- Formalisation: Group Theory
- Diffie-Hellman Key Exchange (DH)

(Some) Hardness Assumptions

- DLog, CDH, DDH
- Reductions Between Problems

More on DH

- On the Bit Security of DH Keys
- Securing DH Keys
- Choosing Good Parameters
- MiM Attack

Digital Signatures

- Problem Statement
- Syntax
- ECDSA

Public Key Encryption Much More on Digital Signatures Secure Instant Messaging Post Quantum Cryptography

On the Bit Security of Plain DH Keys (and DLog Problem)

Bad news: it is (computationally) easy to find the least significant bit (LSB) of K $dLog_{g}(K)$ is even iff K is quadratic residue in \mathbb{Z}_{p}^{*}

It is easy to compute the s LSBs or MSBs of K when $p - 1 = 2^s \cdot q$, with q odd. Worse news: "Hardness of Distinguishing the MSB or LSB of Secret Keys in Diffie-Hellman Schemes" [FPSZ06]

Securing DH Keys

Good news:

+ there are several ways to boost security for DH and dLog

Triple Diffie-Hellman (X3DH)

G is made of points on an <u>elliptic curve</u>

Finding some bits (aka hard-core bits) is as hard as computing the whole dLog e.g. computing the s + 1-th LSB or MSB of K, when $p - 1 = 2^s \cdot q$, with q odd is **hard**

> Heuristics show that H(K) provides a good cryptographic key if $H: \{0,1\}^{|p|} \rightarrow \{0,1\}^{256}$ is a cryptographic hash function

Choosing Parameters

Setting Let p be a large prime (2048-bits long). Find a generator g of a subgroup of prime order q in \mathbb{Z}_p^* . Let p, q, g be all public information.

 $\textcircled{\ }$ Why are we working in (\mathbb{Z}_{q}, \cdot) instead of $(\mathbb{Z}_{p}^{*}, \cdot)$

- nice mathematical structure for computing exponentiations.
- - \bigcirc p needs to be large enough for DLog to be hard.
 - bounds the length of the key material we can derive.

Here · denotes the operation of the group (multiplication)

• We want to work with prime orders (p, q should both be prime). This guarantees a

• Having $p \neq q$ lets us better balance security vs size of the exchanged messages:

 $\odot q$ can be fairly small for efficient exponentiation, yet not too small as it upper

• For realistic sizes today, we have |p| = 2048 bits and |q| = 256 bits.

30

Man-in-the-Middle Attack Against the DH Key Exchange

Alice and Bob want to find a way to share a secret key k without relying on a previously shared secret AND they want to do so, using a public channel, that is monitored* by the Adversary

*For the sake of this lecture, we only consider passive \mathscr{A} (eavesdropper)

What goes bad if \mathscr{A} is active?

Man-in-the-Middle Attack Against the DH Key Exchange

What's enabling this attack? DH does not authenticate whom you are doing a key exchange with

Authenticating the Source of Information Over the Internet

Problem: if both Alice and Bob know *k*, then cryptographically they are the same person. Bob cannot convince a third party that it was Alice producing something (e.g. a MAC) for that requires the knowledge of *k*. Whatever Alices produces, Bob can produce it as well!

With **public key cryptography** Alice is the only one to know *sk.* If she uses it to do something that is (computationally) impossible to do without *sk*, then everyone can be convinced she did it.

Digital Signature - Syntax

Definition: Digital Signature

- $KeyGen(n) \rightarrow (pk, sk)$ is a probabilistic key generation algorithm \bigcirc
- $Sign(sk, m) \rightarrow \sigma$ is a (possibly) probabilistic algorithm that outputs a signature σ for a message m \bigcirc
- $Ver(pk, m, \sigma) = 1$ if σ is accepted as a valid signature for m against pk, 0 (reject) otherwise. \bigcirc

Correctness

For all key pairs (pk, sk) $\leftarrow KeyGen(n)$ it holds that: Ver(pk, m, Sign(sk, m)) = 1 $Pr[Ver(\mathsf{pk}, m, \sigma) = 1 | \sigma \leftarrow Sign(\mathsf{sk}, m)] = 1$

A digital signature scheme is a triple of PPT algorithms (*KeyGen*, *Sign*, *Ver*) defined as follows:

ECDSA - Background on Elliptic Curve Cryptography

[gifs from arstechnica]

ECDSA - Algorithms

```
KeyGen (sec.par) ⇒ (sk, pk)
d ←$--- [0 ... n-1]
sk = d
pk = Q = d*G
```

```
Sign (sk, msg) ⇒ sgn
k ←$--- [0 ... n-1]
R = k*G
r = R_x mod n
z = sha256(msg)
s = inv(k) • (z + d • r) mod n
sgn = (r, s)
```

```
Verify(pk, msg, sgn) ⇒ {0, 1}
z = sha256(msg)
T = [z·inv(s) mod n]*G
P = [inv(s)·r mod n]*Q
if R == T+P return 1
else return 0
```


36

ECDSA - the Good

- ★ Shorter keys and better security than the RSA signature scheme
- \star Non malleable
- \star IoT friendly

★ In wide adoption (TLS, DigiCert (Symantec), Sectigo (Comodo) ...)

ECDSA - the Bad

implementation

A group of hackers named failOverflow revealed in a presentation how they ...

CASEY JOHNSTON - 12/30/2010, 6:25 PM

{* SECURITY *}

Android bug batters Bitcoin wallets

Old flaw, new problem

Richard Chirgwin

Charlie Osborne 28 May 2020 at 14:07 UTC Updated: 28 June 2021 at 09:05 UTC

Mon 12 Aug 2013 // 00:43 UTC

LadderLeak: Side-channel security flaws exploited to break ECDSA cryptography

ECDSA - What's Next?

Threshold Signatures

Fast-Fourier Lattice-based Compact Signatures over NTRU

LBS signature Schnorr signature

Post Quantum Secure Signatures

