
CRYPTOGRAPHY 
(lecture 5)

Literature: 
“Handbook of Applied Cryptography” (ch 3.6, 3.7, 3.9.1)
“Lecture Notes on Cryptography” by Goldwasser and Bellare (ch 11.1, 10.1, 10.3.1)

“A Graduate Course in Applied Cryptography” (ch 10.2.0, 10.4, 10.5-10.5.1, 13.1) 

“Lecture Notes on Introduction to Cryptography”  by V. Goyal (ch 6)
If you like cryptography, you should ready this paper once in your lifetime: [DH76]

Background on Number Theory (available on Canvas)

https://cacr.uwaterloo.ca/hac/
https://cseweb.ucsd.edu/~mihir/papers/gb.pdf
https://toc.cryptobook.us/
https://www.cs.cmu.edu/~goyal/15356/lecture_notes.pdf
https://ee.stanford.edu/~hellman/publications/24.pdf


Announcements
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๏ Deadline for submitting first draft of HA1 TODAY (end of the day)

๏ This Friday’s lecture will be given by Ivan!

๏ If you have questions / doubts about HA1 come to me at the end of this lecture



…Back in Module 1…
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๏ Perfectly secure encryption (OTP)

๏ Semantically secure encryption (PRG)

๏ IND-CPA secure encryption (AES, Block Ciphers)

๏ Integrity (MAC, AEAD)
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Key-Exchange 
• Problem Statement

• A Simple Solution

• Formalisation: Group Theory 
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• Securing DH Keys
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• MiM Attack 
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The One Fundamental Concept in Public Key Cryptography (PKC)
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This is a hard problem

[the problem is solvable, 
but solving it requires 
time proportional to the 
age of our universe]

..unless..
… you know some additional 
information that makes 
solving the problem easy! 
(trapdoor)

🧐 What does “hard” 
mean in cryptography?

PKC is all about this ‘efficiency gap’ in solving a mathematical problem + to
ns

 o
f r

an
do

m
ne

ss



One-Way Trapdoor Function

Definition: ONE-WAY TRAPDOOR FUNCTION (SCHEME) 

A trapdoor function scheme defined over two finite sets 

is a triple of PPT algorithms  defined as follows: 


๏  is a probabilistic key generation algorithm


๏ For every pk output by KeyGen,  is a deterministic algorithm ( )


๏ For every sk output by KeyGen,  is a deterministic algorithm ( )


AND it holds that:  for all keys generated by KeyGen and for all input .

X, Y
(KeyGen, F, I)

KeyGen(n) → (𝗉𝗄, 𝗌𝗄)

F(𝗉𝗄, ⋅ ) : X → Y F(𝗉𝗄, x) = y

I(𝗌𝗄, ⋅ ) : Y → X I(𝗌𝗄, y′ ) = x′ 

I(𝗌𝗄, F(𝗉𝗄, x)) = x x ∈ X
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x

y=H(x)
x’

easy

hard

{0,1}n

{0,1}d, d < n

inverting becomes 
easy for whoever 

knows the 
trapdoor

sk is the trapdoor



One-Way Trapdoor Function - Security

8

𝒞

𝒜
KeyGen(n) → (𝗉𝗄, 𝗌𝗄)

x ← $X

F(𝗉𝗄, x) = y

x*

(𝗉𝗄, y)

win or lose  wins the game if . If ,  loses.

A scheme  is one-way trapdoor if for any PPT 
adversary  it holds that:  

𝒜 x* = x x* ≠ x 𝒜
(KeyGen, F, I)

𝒜 Adv(𝒜) = Pr[𝒜 wins] < negl(n)

This security game models the “one-way” property 
The condition  (from the previous slide) models the “trapdoor” propertyI(𝗌𝗄, F(𝗉𝗄, x)) = x

(KeyGen, F, I)



An Example: RSA as a One-Way Trapdoor Function
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๏  : Pick two large primes p,q (think 1024-bit long).

                               Pick a random e , compute its inverse d mod ɸ(N).  
                               Set pk=(N,e) and sk=(p,q,d)

๏  : given x , return y = xe mod N


๏  : given y , return x = yd mod N

KeyGen(n) → (𝗉𝗄, 𝗌𝗄)
← $ℤ*N

F(𝗉𝗄, ⋅ ) : ℤN → ℤN ∈ ℤN

I(𝗌𝗄, ⋅ ) : ℤN → ℤN ∈ ℤN
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Problem Statement
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𝒜

Alice and Bob want to find a way to share a secret key  without 
relying on a previously shared secret AND they want to do so, 
using a public channel, that is monitored* by the Adversary

k

*For the sake of this lecture, we only consider passive  (eavesdropper)𝒜

Tool: Exponentiation gx



A Simple Solution
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Pick a number g
Pick another number a

Compute the exponentiation 
A = ga  (g, A) Pick a number b

Compute B = gb B 
Compute the shared secret 

K = Ba
🧐  

Why is K the same for both?

🧐 What prevents  from learning K given (g,A,B)?𝒜

Compute the shared secret 
K = Ab

In theory (=unconditionally) nothing!

In practice, this challenge is (computationally) hard to solve, if you work in the correct domain



 Let’s get formal!



A First Attempt
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g is a prime number and the exponents, a,b, are large positive integers

30226801971775055948247051683954096612865741943 = 7?

This approach could work, but there is no upper limit on how large A,B,K may become.

Moreover, if we want to use K for a symmetric encryption scheme, K needs to be 
encoded into an n-bit string, for some fixed value n.

WANTED: a mathematical object that allows us to do arbitrary exponentiations 
while guaranteeing the values we get stay within a certain range.



(Cyclic) Group
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ℤ12
mod n

3 + 5 = ? mod 7 35 = ? mod 7



Cyclic Group
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Definition: Cyclic Group 

A group  is a finite set of elements (usually also 
denoted at ) together with an operation , that is, a 
function :  with the following properties:

1. Closure: for all  it holds that 

2. Associativity: for all  it holds that 




3. Identity: There exists an element  such that 


 for all 

4. Inverse: for every  there exists a (unique!) 
element  such that .


A cyclic group, is a group for which there exists at 
least one element  that generates the whole 
group: ,  is 
called generator.

𝔾
𝔾 ⋆

⋆ 𝔾 × 𝔾 → 𝔾
g, h ∈ 𝔾 g ⋆ h ∈ 𝔾

g, h, k ∈ 𝔾
(g ⋆ h) ⋆ k = g ⋆ (h ⋆ k)

e ∈ 𝔾
e ⋆ g = g ⋆ e = g g ∈ 𝔾

g ∈ 𝔾
ḡ ∈ 𝔾 g ⋆ ḡ = e

g ∈ 𝔾
⟨g⟩ = {g, g ⋆ g, g ⋆ g ⋆ g, . . . } = 𝔾 g

Think 





𝔾 = (ℤp, + )
ℤp = {0,1,…, p − 1}
g ⋆ h = g + h mod p

p-2

p-1 1

0



A Closer Look at  = ( , +), With  a Large Prime Numberℤp ℤp p
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ℤp = {0,1,…, p − 1}

 all elements in  that have a multiplicative inverseℤ*p = {1,…, p − 1} ℤp

Has cardinality p-1 (which is for sure divisible by 2 
and at least one more prime number)

Consider the group  equipped with multiplication. This group has a funky 
structure that you will study in Home Assignment 2

ℤ*p = (ℤ*p , ⋅ )

Let   (decomposition in prime factors)


Then  contains cyclic sub-groups of order  

p − 1 = ∏qαi
i

ℤ*p q1, q2
1 , …, qα1

1 , q2, …,

the smallest positive integer 
 such that:  in .n gn = 1 𝔾



The Diffie-Hellman Key Exchange Protocol
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Setting

a ← $ℤq ∖ {0}
Compute A = ga mod p A b ← $ℤq ∖ {0}

Compute B = gb mod p
B

Compute the shared 
secret K = Ba

Compute the shared 
secret K = Ab

Security

For this protocol to be secure it is necessary that the values  are not obtainable from a, b A, B

Let  be a large prime (2048-bits long). Find a generator  of a subgroup of 
prime order  in . Let  be all public information.

p g
q ℤ*p p, q, g
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The Discrete Logarithm Assumption (DL, DLog or dLog)
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Let  be cyclic group of order  (where  is a -bit long prime) and  be a generator of . 

The discrete logarithm assumption states that it is computationally infeasible for any 
efficient attacker to find the exponent  such that  for a random . 


Formally: 

𝔾 q q n g 𝔾

x gx = h h ∈ 𝔾
Pr[x* = x |x ← $ℤq, x* ← 𝒜(q, g, gx)] < negl(n)

This is an assumption: it cannot be proven!

Decades of cryptanalysis and scrutiny by the cryptographic community world-wide 
has make us gain confidence that this assumption is true, for large enough primes 



Is This Enough?
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Formally: Pr[x* = x |x ← $ℤq, x* ← 𝒜(q, g, gx)] < negl(n)

..it may still be possible for  to compute  combining  and without learning ..𝒜 K A, B a, b

a ← $ℤq

Compute A = ga mod p A b ← $ℤq

Compute B = gb mod p
B

Compute the shared 
secret K = Ba

Compute the shared 
secret K = Ab



The Computational Diffie-Hellman Assumption (CDH)
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Let  be cyclic group of order  (where  is a -bit long prime) and  be a generator of . 

The computational Diffie-Hellman assumption states that it is computationally 
infeasible for any efficient attacker to find  given .


Formally: 

𝔾 q q n g 𝔾

gab g, ga, gb

Pr[k* = gab |a, b ← $ℤq, k* ← 𝒜(g, ga, gb)] < negl(n)

Note: if DLog is easy, then DH is easy.

But: if DH is easy, is it true that DLog is also easy? This is an open question in cryptography.



 Why Do We Need 
Assumptions in 
Cryptography? 



Hardness 
Assumption

The Flow Chart of How Cryptographic Scheme Are Born

24

Math object Problem Computational 
Security

Construction



Which Problem Is Harder/Easier?
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Let A and B be two computational problems. 
A is said to efficiently (in polynomial time) reduce to B, written A ≤ B if: 

๏ There is an algorithm which solves A using an algorithm which solves B.

๏ This algorithm runs in polynomial time if the algorithm for B does.

Proof structure: build a reduction (sequence of steps, program)


๏  Assume we have an oracle (or efficient algorithm) to solve problem B.

๏  We then use this oracle to give an efficient algorithm for problem A. 



Three Problems
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… And Their Relations

Discrete Logarithm Problem (DLP):
Given  find  such that .h ∈ 𝔾 x h = gx

Computational DH Problem (CDH):
Given  and  find a = gx b = gy c = gxy

Decisional DH Problem (CDH):
Given  ,  and  , 
determine if .

a = gx b = gy c = gz

gxy = gz

≤

Given 

Use the DLog oracle to compute 


Compute the CDH solution: 

⇒ CDH is no harder than DLP, i.e. CDH ≤ DLP

(g, a, b) ∈ 𝔾3

y = dLogg(b)
(a)y = gxy

≤ Given 

Use the CDH oracle to compute 

Check whether 

⇒ DDH is no harder than CDH, i.e. DDH ≤ CDH

(g, a, b, c) ∈ 𝔾4

gxy = DH(a, b)
c = gxy

For more info, check out this blog

http://bristolcrypto.blogspot.com/2014/12/52-things-number-11-what-are-dlp-cdh.html
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On the Bit Security of Plain DH Keys (and DLog Problem)
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a ← $ℤq

Compute A = ga mod p A b ← $ℤq

Compute B = gb mod p
B

Compute the shared 
secret K = Ba

Compute the shared 
secret K = Ab

“Hardness of Distinguishing the MSB or LSB of Secret Keys in Diffie-Hellman Schemes” [FPSZ06]

it is (computationally) easy to find the least significant bit (LSB) of KBad news:
 is even iff  is quadratic residue in dLogg(K) K ℤ*p

Worse news: It is easy to compute the  LSBs or MSBs of  when , with  odd.s K p − 1 = 2s ⋅ q q

https://www.di.ens.fr/~stern/data/St115.pdf


Securing DH Keys
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Finding some bits (aka hard-core bits) is as hard as computing the whole dLogGood news:
e.g. computing the -th LSB or MSB of , when , with  odd is hards + 1 K p − 1 = 2s ⋅ q q

Even better news: Heuristics show that  provides a good cryptographic key 
if  is a cryptographic hash function

H(K)
H : {0,1}|p| → {0,1}256

+ there are several ways to boost security for DH and dLog

Triple Diffie-Hellman (X3DH)

 is made of points on an elliptic curve𝔾

https://signal.org/docs/specifications/x3dh/
https://en.wikipedia.org/wiki/Elliptic-curve_cryptography


Choosing Parameters
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Setting Let  be a large prime (2048-bits long). Find a generator  of a subgroup of 
prime order  in . Let  be all public information.

p g
q ℤ*p p, q, g

🧐 Why are we working in  instead of (ℤq, ⋅ ) (ℤ*p . ⋅ ) Here  denotes the operation 
of the group (multiplication)

⋅

๏ We want to work with prime orders (  should both be prime). This guarantees a 
nice mathematical structure for computing exponentiations.


๏ Having  lets us better balance security vs size of the exchanged messages:

๏  needs to be large enough for DLog to be hard.

๏  can be fairly small for efficient exponentiation, yet not too small as it upper 

bounds the length of the key material we can derive.

๏ For realistic sizes today, we have  bits and  bits.

p, q

p ≠ q
p
q

|p | = 2048 |q | = 256



Man-in-the-Middle Attack Against the DH Key Exchange 
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𝒜

*For the sake of this lecture, we only consider passive  (eavesdropper)𝒜

Alice and Bob want to find a way to share a secret key  without 
relying on a previously shared secret AND they want to do so, 
using a public channel, that is monitored* by the Adversary

k

🧐 What goes bad if  is active?𝒜



Man-in-the-Middle Attack Against the DH Key Exchange 
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DH does not authenticate whom you are doing a key exchange with🧐 What’s enabling this attack?

A

B*

a ← $ℤq

A = ga mod p b ← $ℤq

B = gb mod p

KB = (A*)b

𝒜
a* ← $ℤq

A* = ga* mod p
KB = Ba*

A*

B
b* ← $ℤq

B* = gb* mod p
KA = Ab*

KA = (B*)a



Authenticating the Source of Information Over the Internet
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𝒜
k k

Problem: if both Alice and Bob know k, then cryptographically they are the same person. 
Bob cannot convince a third party that it was Alice producing something (e.g. a MAC) for 
that requires the knowledge of k. Whatever Alices produces, Bob can produce it as well!

𝒜
𝗌𝗄 𝗉𝗄

With public key cryptography  Alice is the only one to know sk. If she uses it to do something 
that is (computationally) impossible to do without sk, then everyone can be convinced she did it.



Digital Signature - Syntax
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Definition: Digital Signature 

A digital signature scheme is a triple of PPT algorithms  defined as follows: 


๏  is a probabilistic key generation algorithm


๏  is a (possibly) probabilistic algorithm that outputs a signature  for a message 


๏ 1 if  is accepted as a valid signature for  against , 0 (reject) otherwise.

(KeyGen, Sign, Ver)
KeyGen(n) → (𝗉𝗄, 𝗌𝗄)

Sign(𝗌𝗄, m) → σ σ m

Ver(𝗉𝗄, m, σ) = σ m 𝗉𝗄

Correctness 

For all key pairs  it holds that:  
(𝗉𝗄, 𝗌𝗄) ← KeyGen(n) Ver(𝗉𝗄, m, Sign(𝗌𝗄, m)) = 1
Pr[Ver(𝗉𝗄, m, σ) = 1 |σ ← Sign(𝗌𝗄, m)] = 1



ECDSA - Background on Elliptic Curve Cryptography

35[gifs from arstechnica]

y2 = x3 + ax + b

Elliptic curves have a group structure

y2 = x3 − x + 1 mod 97

https://arstechnica.com/information-technology/2013/10/a-relatively-easy-to-understand-primer-on-elliptic-curve-cryptography/2/


ECDSA - Algorithms
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KeyGen

Sign

Verify

z = sha256(msg)
T = [z·inv(s) mod n]*G
P = [inv(s)·r mod n]*Q
if R == T+P return 1
else return 0

(pk, msg, sgn) ⇨ {0, 1}

k ←$⎯ [0 ... n-1]
R = k*G
r = R_x mod n
z = sha256(msg)
s = inv(k)·(z + d·r) mod n
sgn = (r, s)

(sk, msg) ⇨ sgn

(sec.par) ⇨ (sk, pk)
d ←$⎯ [0 ... n-1]
sk = d
pk = Q = d*G



ECDSA - the Good
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★  Shorter keys and better security than the RSA signature scheme


★  Non malleable 


★  IoT friendly


★  In wide adoption (TLS, DigiCert (Symantec), Sectigo (Comodo) … )



ECDSA - the Bad
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repeated nonce attack Bonus 2



ECDSA - What’s Next?
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Post Quantum Secure Signatures

LBS signature

Schnorr signature

Threshold Signatures


