
CRYPTOGRAPHY
(Lecture 4)

Literature:

“Handbook of Applied Cryptography” (ch 9.0,9.5, 9.5.1, 9.75)
“Lecture Notes on Cryptography” by S. Goldwasser and M. Bellare (ch 9.0,9.1,9.2, 9.8.1)

“A Graduate Course in Applied Cryptography” by D. Boneh and V. Shoup (ch 6, 6.1, 9.0, 9.3, 9.7)

https://cacr.uwaterloo.ca/hac/
https://cseweb.ucsd.edu/~mihir/papers/gb.pdf
https://toc.cryptobook.us/

Commitment Schemes

Hash Functions

Blockchain Technology

OTP & Perfect Secrecy

Randomness in Cryptography

Semantic Security + Proof

Block Ciphers

Modes of Operation

Module 1: Agenda

Message Authentication Codes (MAC)
• What’s the Problem?

• Definition (Syntax)

• Adversary’s Goals & Powers

• Security Notion

• A Construction: HMAC

Authenticated Encryption
• GCM

2

Secure Communication Over an Insecure Channel

3

𝒜

message

Integrity / Authenticity

message*

This time: should not be
able to modify messages in
an undetectable way, or to
impersonate a sender

𝒜 Last time: should not be able to
distinguish between the encryption
of two known messages (IND-CPA)

𝒜

Confidentiality / Privacy

message

Why Does Integrity Matter?

4

A motivating example
Fact1: files sent over a network have well-known, predictable headers. A typical example is
emails, which have sender (From:) and receiver (To:) info, as well as date, subject and others.

Fact2: Files are often encrypted in transit, so this information is not readable to the
eavesdropping adversary.

𝒜
message message*

From: Alice,
100 SEK

From: Eve,
100 SEK

This attack is trivial against AES (or any block cipher) in CBC mode

The adversary that launches this attack will succeed with
100% probability AND without knowing the secret key

Cipher Block Chaining Mode (CBC)

5

E(k, ⋅)

m0 m1

c0 c1

E(k, ⋅)

⊕initialization vector (IV) ⊕
𝖠𝖤𝖲 − 𝖢𝖡𝖢

 c0 = E(k, m0 ⊕ IV)
ci = E(k, mi ⊕ ci−1) for i > 0

 m0 = D(k, c0) ⊕ IV
mi = D(k, ci) ⊕ ci−1 for i > 0

From: Alice, 100 SEK

 IV* = IV ⊕ 𝙵𝚛𝚘𝚖 : 𝙰𝚕𝚒𝚌𝚎 ⊕ 𝙵𝚛𝚘𝚖 : 𝙴𝚟𝚎

ciphertext = (IV, c0, c1)

ciphertext* = (IV*, c0, c1)

🧐 Encryption alone cannot detect the change, but Bob could. Can you see how?

The Attack:

Integrity Matters. But Even More So Does Authenticating the

6

Source of a Message

7

Encryption is not enough!
We need a new cryptographic primitive

Message Authentication Code (MAC)

8

Definition: MAC

A Message Authentication Code (MAC in short) is a pair of efficient
algorithms (MAC, Ver) with the following syntax:

๏ is a probabilistic algorithm that takes in
input a key , a message and outputs a tag .

๏ is a deterministic algorithm that
takes in input a key , a message and a tag , and returns 1
(accept) or 0 (reject).

And satisfying the correctness condition:

 for all

MAC : 𝒦 × ℳ → 𝒯
k m t

Ver : 𝒦 × ℳ × 𝒯 → {0,1}
k m t

Pr[Ver(k, m, MAC(k, m)) = 1] = 1 k ∈ 𝒦, m ∈ ℳ

Protecting Communications Over an Insecure Channel

9

𝒜
k k

MAC(k, m) → t

(m, t) (m*, t*)

Ver(k, m*, t*) → b

 b = 1 if m* = m and t = t*
 b = 0 if m* ≠ m

Aim: quantify the ’s likelihood in forging a valid tag for a new (different) message 𝒜 t* m*

A tag is valid for a message against
the key , if

t m
k Ver(k, m, t) = 1

Goals:
Encryption = prevent any third party from understanding the content of the communication

MAC = prevent any third party (or the channel) from altering the communication

🧐 What about replay attacks?

Towards a Security Definition

10

𝒜

Adversary’s Goal
To decrypt the communication
To recover the secret key

Here we do not care about secrecy, only about integrity

Too strong requirement, damage can be done with less

To produce a tag for a known message that the receiver will deem authentic
and that is different from what has been sent during the communication

In crypto jargon: Unforgeability under chosen message attack

To modify the content of the communication Vague, everyone can “flip bits”

Towards a Security Definition

11

𝒜
Adversary’s Power

Efficient algorithm (probabilistic, and runs in polynomial time)< 260

 can see everything transmitted over the communication channel𝒜
 knows all details of the MAC scheme except for the secret key

(Kerckhoffs’ principle)
𝒜

Adversary’s Goal
To produce a tag that certifies the authenticity of a known message that is
different from what has been sent during the communication

In crypto jargon: Unforgeability under chosen message attack

 can drop, replace and inject information into the communication channel𝒜

passive
adversary

active
adversary

Towards a Security Definition

12

𝒜
Adversary’s Power

Adversary’s Goal
To produce a tag that certifies the authenticity of a known message that is
different from what has been sent during the communication

In crypto jargon: Unforgeability under chosen message attack

 can drop, replace and inject information into the communication channel

(active adversary)
𝒜

Adversary’s Resources

Access to the communication channel
Access to oracles

𝒪MAC
k t

m

𝒪Ver
k 0 or 1

(m, t)

Security for MACs

13

 wins the security game iff:

 AND

𝒜
Ver(k, m*, t*) = 1 m* ∉ {m1, …, mQM

}

mi

bj

𝒜

k ← $𝒦

ti
adaptive queries

(m*, t*)

Aim: quantify the ’s likelihood in forging a valid tag for a new (different) message 𝒜 t* m*

𝒞

This security game is called: Unforgeability under Chosen Message Attack

(mj, tj)

for i = 1,…, QM = poly(n)
for j = 1,…, QV = poly(n)

MAC(k, mi) → ti

Ver(k, mj, tj) → bj

Secure MAC

14

A Message Authentication Code is said to be secure (unforgeable
under chosen message attack) if for all efficient adversaries the
probability that wins the security game is negligible. Formally,

𝒜

Pr[Ver(k, m*, t*) = 1 | (m*, t*) ← 𝒜𝒪MAC
k ,𝒪Ver

k ∧ m* ∉ {mi}
QM
i=1] ≤ negl(n)

In this case n is the size of
the key space 𝒦 = {0,1}n

Verification Queries Do Not Help!

15

For every that plays the unforgeability game with verification oracle, we can construct a new adversary
that plays the unforgeability game without verification oracle and Prob[wins] = Prob[wins]/ .

Wlog, we can assume that submits its final forgery as a query to the Verification oracle during the game.

𝒜 ℬ
ℬ 𝒜 QV

𝒜

(m*, t*) ← ${(mj, tj)}
QV
j=1∖{(mi, ti)}

QS
j=1

𝒜
𝒞

𝒪MAC
k t

m

k ← $𝒦

ti
mi

ℬ

bj

(mj, tj)

By always returning , might be giving the wrong answer to some time (precisely when
produces a forgery). But wouldn’t know, so it will pick one of ’s queries as its forgery. This guess
will be correct with probability 1/ .

bj = 0 ℬ 𝒜 𝒜
ℬ 𝒜

QV For more details, read Theorem 6.1 in BonehShoup

(m*, t*)

🧐 How do we answer
verification queries?

 Always answer ,

 Unless

 Answer by MAC oracle

bj = 0
(mj, tj) = (mi, ti)

CBC-MAC

16

The random IV in CBC encryption mode serves to prevent a dictionary attack on the first ciphertext block.
Confidentiality is not a concern for MACs, so IV=0 is good enough. The ‘Tag’ is only one block long (so
usually shorter than a message, that can be multiple blocks long… + padding)

🧐 This RAW version of CBC-MAC is NOT unforgeable. Can you see why?

Raw CBC-MAC Message Extension Attack

17

𝒜
𝒞

m2 = (M′￼0 | |M′￼1)

t2 = E(k, E(k, M′￼0) ⊕ M′￼1)

(m*, t*)

t1 = E(k, E(k, M0) ⊕ M1)

m1 = (M0 | |M1)

= ((M0 | |M1 | |M′￼0 ⊕ t1 | |M′￼1), t2)

ANSI CBC-MAC

18

MACing Using Block Ciphers VS Hash Functions

19

๏ Cryptographic hash functions are usually faster to
compute than block ciphers, in software
implementations

๏ The code that implements many hash functions is
free, ready to use and can “cross borders” [USA
used to restrict the export of cryptographic
technologies and devices until 1992!]

BUT
๏ Hash functions are not designed for message
authentication, and usually do not have keys! How
to go about this?

๏ HMAC mandatory MAC for internet security
protocols (TLS, SSH)

HMAC

20

ipad = the byte 0x36 repeated 64 times
opad = the byte 0x5C repeated 64 times.

HMAC(k, text) = H(k ⊕ 𝚘𝚙𝚊𝚍 | |H(k ⊕ 𝚒𝚙𝚊𝚍 | | text))

TLS1.2 required HMAC-SHA1-96

TLS1.3 replaces HMACs with a
new crypto primitive:
authenticated encryption (AEAD)

Commitment Schemes

Hash Functions

Blockchain Technology

OTP & Perfect Secrecy

Randomness in Cryptography

Semantic Security + Proof

Block Ciphers

Modes of Operation

Module 1: Agenda

Message Authentication Codes (MAC)
• What’s the Problem?

• Definition (Syntax)

• Adversary’s Goals & Powers

• Security Notion

• A Construction: HMAC

Authenticated Encryption
• GCM

21

Authenticated Encryption (With Associated Data)

22

CONFIDENTIALITY
&

 INTEGRITY
at the same time

AE.Decrypt

b ← Ver(k1, c0, c1)
Split k = (k0 | |k1)

if return

Else return

b = 1 D(k0, c0)
⊥

Authenticated Encryption via Generic Composition

23
There are many ways to combine a cipher and a MAC, not all combinations are secure!

Encrypt-and-MAC:

AE.Encrypt

 c0 ← E(k0, m)
c1 ← MAC(k1, m)

Split k = (k0 | |k1)

return c = (c0, c1)

AE.Decrypt

 m ← D(k0, c0)
b ← Ver(k1, m, c1)

Split k = (k0 | |k1)

if return

Else return

b = 1 m
⊥

Encrypt-then-MAC:

AE.Encrypt

 c0 ← E(k0, m)
c1 ← MAC(k1, c0)

Split k = (k0 | |k1)

return c = (c0, c1)

This is the most secure way to
compose the two primitives
It is used in TLS1.2, IPsec, GCM

- may leak information about
- decryption happens before the integrity check

c1 m

Galois Counter Mode (GCM)

24

๏ Encrypt-then-MAC AE construction

๏ Mode of operation for symmetric-key
cryptographic block ciphers which is widely
adopted for its performance

๏ State-of-the-art throughput rates with
inexpensive hardware resources

๏ Provides both data authenticity (integrity)
and confidentiality

๏ Additionally may authenticate plaintext
Associated Data (AEAD), e.g., headers

AES

?

25

GHASH(H,A,C) = X
GHASH : 𝒦 × 𝒫 × 𝒳 → 𝒳

GHASH

H = Ek(0128)

A1 Am | |0128−v… C1 Cn | |0128−u… L

A =

C =

L =

S ∈ {0,1}128×(m+n+1)

 : GHASH Keyed Hash Function Over a Galois Field𝗆𝗎𝗅𝗍H

GHASH(H,S_i) = X_i

Xi = (Xi−1 ⊕ Si) ⋅ H (for i > 0)

X0 = 0128

🧐 How to multiply two bit-strings?

Galois Field Multiplication

26

GF(2128) := ℤ2[x]/(x128 + x7 + x2 + x + 1)

Intuition:

 1- see bit-strings as vectors with coefficients over

 2- see vectors as polynomials

 3- we know how to multiply polynomials

ℤ2

Math caveat

In order to make sure the result of the multiplication
is always a bit-string of length 128 we need to do
operations in a special mathematical object called
Galois Field

Overview of Module 1

27

Block-
Cipher

MAC

Now you can understand ~70% of the cryptographic tools used nowadays

What’s left?
๏Public key encryption

๏Key exchange protocols

๏Digital signatures and Certificates

๏Proof Systems (NIZK, SNARK)

๏MPC (secure multi party computation)

๏Privacy Enhancing Technologies

OTP
IND-CPA

Perfect-Secrecy

Semantic Security

AEHash
Functions

Commitment
Schemes

