

Literature:

"<u>Handbook of Applied Cryptography</u>" (ch 9.0,9.5, 9.5.1, 9.75) "<u>Lecture Notes on Cryptography</u>" by S. Goldwasser and M. Bellare (ch 9.0,9.1,9.2, 9.8.1) "<u>A Graduate Course in Applied Cryptography</u>" by D. Boneh and V. Shoup (ch 6, 6.1, 9.0, 9.3, 9.7)

CRYPICERAPHY

(Lecture 4)

Module 1: Agenda

- **Commitment Schemes**
- **Hash Functions**
- **Blockchain Technology**
- **OTP & Perfect Secrecy**
- **Randomness in Cryptography**
- **Semantic Security + Proof**
- **Block Ciphers**
- **Modes of Operation**

Message Authentication Codes (MAC) • What's the Problem? • Definition (Syntax) • Adversary's Goals & Powers Security Notion • A Construction: HMAC

Authenticated Encryption • GCM

Secure Communication Over an Insecure Channel

message

This time: *A* should **not** be able to **modify** messages in an undetectable way, or to impersonate a sender

Integrity / Authenticity

Why Does Integrity Matter?

A motivating example

- Fact2: Files are often **encrypted** in transit, so this information is not readable to the
- eavesdropping adversary.

This attack is trivial against AES (or any block cipher) in **CBC mode**

Fact1: files sent over a network have well-known, predictable headers. A typical example is emails, which have sender (From:) and receiver (To:) info, as well as date, subject and others.

> The adversary that launches this attack will succeed with 100% probability AND without knowing the secret key

Cipher Block Chaining Mode (CBC)

Second Se

$$c_0 = E(k, m_0 \oplus IV)$$

$$c_i = E(k, m_i \oplus c_{i-1}) \text{ for } i > 0$$

$$m_0 = D(k, c_0) \oplus IV$$

$$m_i = D(k, c_i) \oplus c_{i-1} \text{ for } i > 0$$

Integrity Matters. But Even More So Does Authenticating the **Source of a Message**

Encryption is not enough! We need a new cryptographic primitive

Think Halloween

Message Authentication Code (MAC)

Definition: MAC

algorithms (MAC, Ver) with the following syntax: input a key k, a message m and outputs a tag t. takes in input a key k, a message m and a tag t, and returns 1 (accept) or 0 (reject).

And satisfying the **correctness** condition:

- A Message Authentication Code (MAC in short) is a pair of efficient
- $MAC: \mathscr{K} \times \mathscr{M} \to \mathscr{T}$ is a probabilistic algorithm that takes in
- Ver : $\mathscr{K} \times \mathscr{M} \times \mathscr{T} \to \{0,1\}$ is a deterministic algorithm that

Pr[Ver(k, m, MAC(k, m)) = 1] = 1 for all $k \in \mathcal{K}, m \in \mathcal{M}$

Protecting Communications Over an Insecure Channel

Goals:

Encryption = prevent any third party from **understanding** the content of the communication **MAC** = prevent any third party (or the channel) from **altering** the communication

 $k \qquad (m, t)$ $MAC(k, m) \rightarrow t$

A tag t is **valid** for a message m against the key k, if Ver(k, m, t) = 1

Aim: quantify the \mathscr{A} 's likelihood in forging a valid tag t^* for a **new** (different) message m^*

Towards a Security Definition

Adversary's Goal

To decrypt the communication

To recover the secret key Too strong requirement, damage can be done with less **To modify the content of the communication** Vague, everyone can "flip bits"

To produce a tag for a known message that the receiver will deem authentic and that is *different* from what has been sent during the communication In crypto jargon: Unforgeability under chosen message attack

Here we do not care about secrecy, only about integrity

10

Towards a Security Definition

passive adversary

active adversary **Adversary's Goal**

Adversary's Power

A knows all details of the MAC scheme except for the secret key (*Kerckhoffs' principle*)

To produce a tag that certifies the **authenticity** of a known message that is different from what has been sent during the communication In crypto jargon: Unforgeability under chosen message attack

- Efficient algorithm (probabilistic, and runs in polynomial time $< 2^{60}$)
- \mathscr{A} can see everything transmitted over the communication channel

 \mathscr{A} can drop, replace and inject information into the communication channel

11

Towards a Security Definition

Adversary's Goal

different from what has been sent during the communication

Adversary's Power \mathscr{A} can drop, replace and inject information into the communication channel (*active* adversary)

Adversary's Resources

Access to the communication channel

Access to oracles

To produce a tag that certifies the **authenticity** of a known message that is In crypto jargon: Unforgeability under chosen message attack

Security for MACs

This security game is called: Unforgeability under Chosen Message Attack

Aim: quantify the \mathscr{A} 's likelihood in forging a valid tag t^* for a **new** (different) message m^*

Secure MAC

A Message Authentication Code is said to be **secure** (unforgeable under chosen message attack) if **for all efficient** adversaries the probability that \mathscr{A} wins the security game is **negligible**. Formally,

 $Pr[Ver(k,m^*,t^*) = 1 \,|\, (m^*,t^*) \leftarrow$

$$\mathscr{A}^{\mathcal{O}_k^{MAC}, \mathcal{O}_k^{Ver}} \wedge m^* \notin \{m_i\}_{i=1}^{Q_M}] \le negl(n)$$

In this case n is the size of the key space $\mathcal{K} = \{0,1\}^n$

Verification Queries Do Not Help!

For every \mathscr{A} that plays the unforgeability game with verification oracle, we can construct a new adversary \mathscr{B} that plays the unforgeability game without verification oracle and **Prob**[\mathscr{B} wins] = **Prob**[\mathscr{A} wins]/ Q_V . Wlog, we can assume that \mathscr{A} submits its final forgery as a query to the Verification oracle during the game.

By always returning $b_i = 0$, \mathscr{B} might be giving the wrong answer to \mathscr{A} some time (precisely when \mathscr{A} produces a forgery). But \mathscr{B} wouldn't know, so it will pick one of \mathscr{A} 's queries as its forgery. This guess will be correct with probability $1/Q_V$. For more details, read Theorem 6.1 in BonehShoup 15

$$m_{j}, t_{j}\}_{j=1}^{Q_{V}} \setminus \{(m_{i}, t_{i})\}_{j=1}^{Q_{S}}$$

The random IV in CBC encryption mode serves to prevent a dictionary attack on the first ciphertext block. Confidentiality is not a concern for MACs, so IV=0 is good enough. The 'Tag' is only one block long (so usually shorter than a message, that can be multiple blocks long... + padding)

It is RAW version of CBC-MAC is NOT unforgeable. Can you see why?

 $(m^*, t^*) = ((M_0 | |M_1| | M_0 \oplus t_1 | |M_1'), t_2)$

ANSI CBC-MAC

(b) otherwise

MACing Using Block Ciphers VS Hash Functions

- Cryptographic hash functions are usually faster to compute than block ciphers, in software implementations
- The code that implements many hash functions is free, ready to use and can "cross borders" [USA used to restrict the export of cryptographic technologies and devices until 1992!]

BUT

- Hash functions are not designed for message authentication, and usually do not have keys! How to go about this?
- HMAC mandatory MAC for internet security protocols (TLS, SSH)

$HMAC(k, text) = H(k \oplus \text{opad} | | H(k \oplus \text{ipad} | | text))$

ipad = the byte 0x36 repeated 64 timesopad = the byte 0x5C repeated 64 times.

> TLS1.2 required HMAC-SHA1-96 TLS1.3 replaces HMACs with a new crypto primitive: authenticated encryption (AEAD)

Module 1: Agenda

Commitment Schemes Hash Functions Blockchain Technology • What's the Problem? Definition (Syntax) **OTP & Perfect Secrecy** • Adversary's Goals & Powers Security Notion **Randomness in Cryptography** • A Construction: HMAC **Semantic Security + Proof Authenticated Encryption Block Ciphers** • GCM **Modes of Operation**

Message Authentication Codes (MAC)

Authenticated Encryption (With Associated Data)

CONFIDENTIALITY & INTEGRITY at the same time

Authenticated Encryption via Generic Composition

- c_1 may leak information about m
- decryption happens before the integrity check

Encrypt-and-MAC:

AE.Encrypt

Split $k = (k_0 | | k_1)$ $c_0 \leftarrow E(k_0, m)$ $c_1 \leftarrow MAC(k_1, m)$ return $c = (c_0, c_1)$

AE.Decrypt Split $k = (k_0 | | k_1)$ $m \leftarrow D(k_0, c_0)$ $b \leftarrow Ver(k_1, m, c_1)$ if b = 1 return mElse return \perp

There are many ways to combine a cipher and a MAC, not all combinations are secure!

This is the most secure way to compose the two primitives It is used in TLS1.2, IPsec, GCM

Encrypt-then-MAC:

AE.Encrypt Split $k = (k_0 | | k_1)$ $c_0 \leftarrow E(k_0, m)$ $c_1 \leftarrow MAC(k_1, c_0)$ return $c = (c_0, c_1)$

AE.Decrypt Split $k = (k_0 | | k_1)$ $b \leftarrow Ver(k_1, c_0, c1)$ if b = 1 return $D(k_0, c_0)$ Else return ⊥

Galois Counter Mode (GCM)

AES

- Incrypt-then-MAC AE construction
- Mode of operation for symmetric-key cryptographic block ciphers which is widely adopted for its performance
- State-of-the-art throughput rates with inexpensive hardware resources
- Provides both data authenticity (integrity) and confidentiality
- Additionally may authenticate plaintext Associated Data (AEAD), e.g., headers

mult_{*H*} : GHASH Keyed Hash Function Over a Galois Field

 $GHASH: \mathscr{H} \times \mathscr{P} \times \mathscr{X} \to \mathscr{X}$ GHASH(H,A,C) = X

GHASH(H,S_i) = X_i

$$X_i = (X_{i-1} \bigoplus S_i) : H \quad (for \ i > 0)$$

 $X_0 = 0^{128}$
 $H = E_k(0^{128})$
How to multiply two bit-strings?

Auth Tag

\cap		
/		
£		

Galois Field Multiplication

Intuition:

- 1- see bit-strings as vectors with coefficients over \mathbb{Z}_2
- 2- see vectors as polynomials
- 3- we know how to multiply polynomials

Math caveat

In order to make sure the result of the multiplication is always a bit-string of length 128 we need to do operations in a special mathematical object called **Galois Field**

$$GF(2^{128}) := \mathbb{Z}_2[x]/(x^{128} + x^7 + x^2 + x + 1)$$

Overview of Module 1

Now you can understand ~70% of the cryptographic tools used nowadays

What's left?

- Public key encryption
- Key exchange protocols
- Objective Digital signatures and Certificates
- Proof Systems (NIZK, SNARK)
- MPC (secure multi party computation)
- Privacy Enhancing Technologies

