
CRYPTOGRAPHY

(Lecture 2)

Literature:

“Handbook of Applied Cryptography” (ch 6.1 Note on OTP)
“Lecture Notes on Introduction to Cryptography” by V. Goyal (ch1.2,1.3, 3.5,3.7,4.0,4.1,4.2)
“A Graduate Course in Applied Cryptography” by D. Boneh and V. Shoup (ch2-2.2.2, 3.1)

https://cacr.uwaterloo.ca/hac/
https://www.cs.cmu.edu/~goyal/15356/lecture_notes.pdf
https://crypto.stanford.edu/~dabo/cryptobook/BonehShoup_0_5.pdf

Announcements

2

๏ Typo on HA1: (pdf updated yesterday evening)

๏ For questions on HA1 contact Victor or Oscar

๏ “Discussions” are now available on Canvas (pairing up)

๏ How do I prepare for the final exam? For now: Solve the weekly exercises

c ∈ {0,1}X

Recap From Last Lecture

Blockchain Technology
• Digital Bulletin Boards

• Cryptographic Puzzles & Proof of Work

Perfect Secrecy
• Symmetric Encryption

• The One Time Pad (OTP) [Proof]

• Perfect Secrecy

• Shannon’s Theorem [Proof]

Pseudorandom Generators (PRG)
• Definition

• Security

• Secure Encryption From PRG

• Semantic Security [Proof]

Lecture Agenda

3

Home Assignment 1

Deadline: Nov 15th (1st Submission)

x

y=H(x)
x’

easy

hard

{0,1}n

{0,1}d, d < nSHA256

Recap From Last Lecture

Blockchain Technology
• Digital Bulletin Boards

• Cryptographic Puzzles & Proof of Work

Perfect Secrecy
• Symmetric Encryption

• The One Time Pad (OTP) [Proof]

• Perfect Secrecy

• Shannon’s Theorem [Proof]

Pseudorandom Generators (PRG)
• Definition

• Security

• Secure Encryption From PRG

• Semantic Security [Proof]

Lecture Agenda

4

Hash Functions Quick Recap

5

Definition: Collision Resistant HASH FUNCTION

A function is a collision resistant hash function if:

It is compressing (i.e.,), it is one-way (efficient to compute, hard
to invert), and

H : {0,1}n → {0,1}d

n > d

Pr[f(x) = f(x′) |x, x′ ← 𝒜(f), x ≠ x′] ≤ negl(n)

Collision Resistant Hash Functions are at the Core of how BitCoin works

Basics of Cryptocurrencies

7

replace the bank with

miners and

a bulletin board

Initial challenges
1) How to create a digital bulletin board (distributed ledger)?

2) How to agree on one ledger view?

How To Create a Digital Bulletin Board (Distributed Ledger)?

8

The main property to implement is record keeping
1) the past is immutable

2) everyone agrees on the history

• Partition time into époques / periods / time windows

• Anything that happens in one time period is recorded into a block

• Any change to an ‘old’ block affects all following blocks

how can we implement this property using a
cryptographic object?

block 0 block 1 block 2 block 3

How To Set Up a Bulletin Board

9

block 0 block 1events block 2 block 3

Main property we want to implement = record keeping
1) the past is immutable

2) everyone agrees on the history

H(block 0)

events

H(block 1) H(block 2) H(block 3)

prev.block:
H(block 0)

prev.block:
H(block 1)

block*1

H(block*1)

events*

prev.block:
H(block 2)

block*1events*

H(block*1)

prev.block:
H(block*1)

How To Set Up a Bulletin Board

10

block 0 block 1events block 2 block 3

Main property we want to implement = record keeping
1) the past is immutable

2) everyone agrees on the history

use the hash function to chain blocks

H(block 0)

events

H(block 1) H(block 2) H(block 3)

prev.block:
H(block 1)

prev.block:
H(block 2)

prev.block:
H(block*1)

block*1events*

H(block*1)

prev.block:
H(block 0)

H(block 2)

prev.block:
H(block 2)

H(block 3)

Any change to an ‘old’ block affects all following blocks

How To Set Up a Bulletin Board

11

Main property we want to implement = record keeping
1) the past is immutable

2) everyone agrees on the history

• Always build on the longest branch (longest chain rule)

• How to lower the chance that blocks appear at the same time?

block 0 block 1 block 2

block 4block 3

block 4’block 3’

fork

Proof of Work

block 5

winning branch
CONSENSUS

block 6

Proof of Work (Cryptographic Hash Puzzles)

12

block 0 block 1 block 2 block 3

put a rule that makes it “hard” to
compute a “good” hash digest

H(block 0)

events

H(block 1) H(block 2) H(block 3)

prev.block:
H(block 1)

prev.block:
H(block 2)

prev.block:
H(block 0)

RULE : EACH BLOCK HASH NEEDS TO START WITH A GIVEN PREFIX

Main property we want to implement = record keeping
1) the past is immutable

2) everyone agrees on the history

sha256(I love Crypto!) = e8f6178df67ea4ec791b9fd72a2d710a3d832c113ee933a0654ae0e423d49ac9
sha256(I love Crypto!-251509386766) = 0000092273023b5bc71c29852a01d0121336c16e700535cca2a8c5ef1459becd

find a value nonce such that H(block||nonce) = 00000****

nonce 1 nonce 2 nonce 3

block 0 block 1 block 2 block 3

Example: Bitcoin

13

genesis block
created by Nakamoto
on 03.01.2009

époque ~ 10 mins

block size < 1M
B

~ 7 trxn per second

transactions
for époque 1

H(block 1)

prev.block:
H(block 0)

nonce 1

set by the puzzle difficulty
(currently 19 leading zeroes)

🧐 How large is the BitCoin Ledger?

https://www.statista.com/statistics/647523/worldwide-bitcoin-blockchain-size/
http://www.apple.com/uk

Recap From Last Lecture

Blockchain Technology
• Digital Bulletin Boards

• Cryptographic Puzzles & Proof of Work

Perfect Secrecy
• Symmetric Encryption

• The One Time Pad (OTP) [Proof]

• Perfect Secrecy

• Shannon’s Theorem [Proof]

Pseudorandom Generators (PRG)
• Definition

• Security

• Secure Encryption From PRG

• Semantic Security [Proof]

Lecture Agenda

14

Secure Communication Over an Insecure Channel

15

♫
?

Secure Communication Over an Insecure Channel

16

𝒜

message

“ should not learn the message”𝒜

 What’s goal?

 What are resources?

 What does security mean?

 What can Alice and Bob use?

𝒜

𝒜′ s

Let’s start with: a symmetric encryption scheme

Symmetric Encryption - Syntax

17

Definition: Symmetric Encryption

A tuple (KeyGen, E, D) is a symmetric encryption scheme over the sets
(key space), (message space), and (cihpertext space) if all algorithms
are efficient and satisfy the following:

KeyGen(1^n) → k : the key generation is a randomised algorithm that
returns a key k. (This algorithm is often implicit when)

E(k,m) → c : the encryption is a possibly randomised algorithm that on
input a key k and a (plaintext) message m, outputs a ciphertext c.

D(k,c) → m : the decryption is a deterministic algorithm that on input a key
k and ciphertext c, outputs a plaintext message m.

𝒦
ℳ 𝒞

k ← $𝒦

CORRECTNESS:

…. for all messages m ∈ ℳPr[|k ← KeyGen(1n)] = 1D(k, E(k, m)) = m

Symmetric Encryption - Visualisation

18

KeyGen

E D

k

m m

k

c

correctness

=

Symmetric Encryption - the One Time Pad (OTP)

19

Definition: Symmetric Encryption

A tuple (KeyGen, Enc, Dec) is a symmetric encryption scheme over the
sets (key space), (message space), and (cihpertext space) if all
algorithms are efficient and satisfy the following:

KeyGen(1^n) → k : the key generation is a randomised algorithm that
returns a key k. (This algorithm is often implicit when)

E(k,m) → c : the encryption is a possibly randomised algorithm that on
input a key k and a (plaintext) message m, outputs a ciphertext c.

D(k,c) → m : the decryption is a deterministic algorithm that on input a key
k and ciphertext c, outputs a plaintext message m.

𝒦 ℳ 𝒞

k ← $𝒦

Example: the One Time Pad (OTP)

𝒦 = ℳ = 𝒞 = {0,1}n

KeyGen(1n) → k (where k ← ${0,1}n)
E(k, m) = k ⊕ m
D(k, c) = k ⊕ c

CORRECTNESS:

…. for all messages m ∈ ℳPr[|k ← KeyGen(1n)] = 1D(k, E(k, m)) = m

OTP From the Attacker’s Point of View

20

 ⊕k c=mUniformly
random

key

Uniformly
random

ciphertext

⊕ =

Secure Communication Over an Unsecured Channel

21

𝒜
“ should not learn the message”𝒜

 What’s goal?

 What are resources?

 What does security mean?

𝒜

𝒜′ s

E(k, m) → c

k k

D(k, c) = m

c

 … Using Symmetric Encryption

“The ciphertext should not leak any information about the message ”c m

Perfect Secrecy

22

Definition: Perfect Secrecy (Perfect Security)

A symmetric encryption scheme is perfectly secret if for
all pair of messages and for all ciphertexts it holds that:

(KeyGen, E, D)
m0, m1 ∈ ℳ c

Pr[E(k, m0) → c |k ← KeyGen(1n)]

This security notions essentially states that:
An attacker who does not know k learns nothing new about the plaintext m from seeing c.

= Pr[E(k, m1) → c |k ← KeyGen(1n)]

This is an example of unconditional security

The OTP Is Perfectly Secret

23

Proof: In the OTP, for every m and c there is exactly one key k(= m ⊕ c) such that c = E(k, m).
Thus Pr[c = E(k, m)] = 1/| |.
𝒦

Case n = 1

Hence: Pr[E(k, m0) → c |k ← KeyGen(1n)] =
1

|𝒦 |
= Pr[E(k, m1) → c |k ← KeyGen(1n)]

One Time Pad: Problems

24

1- The key is as long as the message

2- The key should only be used to encrypt ONE message

3- The ciphertext is (intentionally!) malleable

𝒜E(k, m) → c D(k, c*) = m ⊕ e
c c* = c ⊕ e

Shannon’s Theorem

25

Theorem (Shannon 1940s)

A symmetric encryption scheme define over has
perfect security if and only if .

(KeyGen, E, D) (𝒦, ℳ, 𝒞)
|𝒦 | ≥ |ℳ |

Proof: Fix an arbitrary and , and let . Since the cipher
has perfect secrecy, for any we have when that

.

Thus for each there is a key such that .

But these keys must all be different; if there was a key and plaintexts and such
that , then we lose correctness (the decryption of for that
key becomes ambiguous). Thus .

m0 ∈ M k0 ∈ K c0 = E(k0, m0)
m ∈ M k ← $𝒦

Pr[c0 = E(k, m)] = Pr[c0 = E(k, m0)] > 0
m ∈ ℳ k ∈ 𝒦 E(k, m) = c0

k m1 m2
E(k, m1) = E(k, m2) = c0 c0

|𝒦 | ≥ |ℳ |

Take away: perfect security is impractical

How close to perfect security can
we go, while being practical?

A Little Secret: the Core of Crypto Is Randomness

27

The perfect secrecy of OTP comes from using one random key to mask/hide one message

We cannot reuse the key (otherwise we lose security) but can we ‘expand’ it?

This is the
goal of
Pseudo
Random
Generators
(PRG)

Recap From Last Lecture

Blockchain Technology
• Digital Bulletin Boards

• Cryptographic Puzzles & Proof of Work

Perfect Secrecy
• Symmetric Encryption

• The One Time Pad (OTP) [Proof]

• Perfect Secrecy

• Shannon’s Theorem [Proof]

Pseudorandom Generators (PRG)
• Definition

• Security

• Secure Encryption From PRG

• Semantic Security [Proof]

Lecture Agenda

28

Pseudo Random Generators (PRG)

29

Definition: PRG

A Pseudo Random Generator is a deterministic, efficiently computable
function that on input a seed of bits,
outputs a sequence of . Moreover, for no efficient
adversary can tell apart from a random string .

𝖯𝖱𝖦 : {0,1}S → {0,1}L s S
L > S s ← ${0,1}S

𝖯𝖱𝖦(s) l ← ${0,1}L

The best way to check if a candidate algorithm is a PRG is by running a series of tests,
there is no mathematical proof! But we can reason about the security of a PRG using a
formal (mathematical) security game.

Pseudo Random Generators (PRG)

30

The best way to check if a candidate algorithm is a PRG is by running a series of tests,
there is no mathematical proof! But we can reason about the security of a PRG
using a formal (mathematical) security game.

“Real OR Random” Security (Intuition)

31https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DzGLx_mLLu0c&psig=AOvVaw2apYsTgLReXypLHAZ3jP-3&ust=1650024734701000&source=images&cd=vfe&ved=2ahUKEwixrN2iw5P3AhXYZfEDHcXCDJcQjhx6BAgAEAw

https://www.youtube.com/watch?v=zGLx_mLLu0c

Security Game For PRG

32

 wins the security game if .

If , loses the game.

𝒜 b* = b
b* ≠ b 𝒜

𝒞
 challenger

Aim: quantify the attacker’s likelihood in distinguishing
PRG from a source of uniform randomness over {0,1}L

b ← ${0,1}

If :

If :

b = 0
s ← ${0,1}S

k = 𝖯𝖱𝖦(s)

b = 1
k ← ${0,1}L

𝖯𝖱𝖦(⋅)

k

𝒜

adversary

b*

win or lose

Security Game For PRG

33

Definition: Secure PRG

A pseudo random function is a secure PRG if
any PPT attacker has only negligible advantage in winning the
secure PRG game. Formally,

𝖯𝖱𝖦 : {0,1}S → {0,1}L

𝒜

Adv(𝒜) = |Pr[𝒜 wins] −
1
2

| < negl(S)

Verbose description of the PRG security game
1. The challenger draws a uniformly random bit .

2. If , the challenger draws a random seed and computes .  

If , the challenger draws a uniformly random string .

3. sends to .

4. tries to determine from , and eventually (within polynomial time) returns its guess .

5. sends to the . The adversary wins if ′.

𝒞 b ← ${0,1}
b = 0 s ← ${0,1}S k = 𝖯𝖱𝖦(s)
b = 1 k ← ${0,1}L

𝒞 k 𝒜
𝒜 b k b*
𝒜 b* 𝒞 b* = b

Construct a Secure Encryption Scheme From a PRG

34

A generic PRG

𝖯𝖱𝖦 : {0,1}S → {0,1}L

𝖯𝖱𝖦(s) = k

A One-time PRG cipher

ℳ = C = {0,1}L, 𝒦 = {0,1}S, S < L
KeyGen(1S) → s (where s ← ${0,1}S)
Enc(s, m) = 𝖯𝖱𝖦(s) ⊕ m
Dec(s, c) = 𝖯𝖱𝖦(s) ⊕ c

KeyGen

E D

s ← ${0,1}S
s

m m

s

c

PRG

k

PRG

k

⊕ ⊕

🧐 Does this cipher
have perfect security?

We need a new security definition
that works when |𝒦 | < |ℳ |

“Left OR Right” Security (Intuition)

35

Semantic Security

36

Aim: quantify the attacker’s likelihood in distinguishing an encryption of a (chosen) message
from an encryption of another (chosen) message

m0
m1

𝒞
 challenger

If :

If :

b = 0
c ← E(k, m0)
b = 1
c ← E(k, m1)

(KeyGen, E, D)

c

(m0, m1)
s . t . |m0 | = |m1 |

k ← KeyGen(1n)
b ← ${0,1}

 wins the security game if .

If , loses the game

𝒜 b* = b
b* ≠ b 𝒜

𝒜

adversary

win or lose

b*

Semantic Security for Symmetric Encryption

37

Definition: Semantic security

A symmetric encryption scheme is semantically secure if any PPT attacker
has only negligible advantage in winning the semantic security game. Formally,

𝒜

Adv(𝒜) = |Pr[𝒜 wins] −
1
2

| < negl(n)

Verbose description of the semantic security game

1. The challenger generates a key and draws a random bit .

2. The adversary chooses two messages of the same length and sends them to .

3. encrypts according to the bit drawn in step 1, and returns to .

4. tries to determine from , and .

5. sends to the . The adversary wins if ′.

𝒞 k ← KeyGen(1n) b ← ${0,1}
𝒜 m0, m1 𝒞

𝒞 mb c = Enc(k, mb) 𝒜
𝒜 b c m0, m1
𝒜 b* 𝒞 b* = b

Remarks on the Definition

38

๏ We don’t expect the encryption scheme to hide the length of the plaintext;  
(hence and must have the same length).

๏ An attacker who just guesses, choosing a random , has advantage 0.

๏ An attacker who always answers (or) also has advantage 0.

๏ If the encryption scheme is the one time pad, any attacker has advantage 0.

m0 m1
b* ← ${0,1}

b* = 1 b* = 0

Definition: Semantic security

A symmetric encryption scheme is semantically secure if any PPT attacker
has only negligible advantage in winning the semantic security game. Formally,

𝒜

Adv(𝒜) = |Pr[𝒜 wins] −
1
2

| < negl(n)

Proving our Construction Is Semantically Secure

39

If is a secure PRG, then the cipher defined by
 is semantically secure.

Formally, for any efficient :

𝖯𝖱𝖦 : {0,1}S → {0,1}N

Enc(s, m) = 𝖯𝖱𝖦(s) ⊕ m; Dec(s, c) = 𝖯𝖱𝖦(s) ⊕ c
𝒜 Advsem.sec(𝒜) = |Pr[𝒜 wins] −

1
2

| < negl(S)

Proof Plan:
We must prove that any efficient adversary against the encryption’s semantical security
has negligible advantage, without knowing anything about the adversary’s strategy.

…or… proof by reduction to absurd
🧐 HOW ?

Assume that there exists an adversary that can break the semantic
security of the encryption. Then we build a new adversary that uses
to break the security of the PRG. Since PRG is assumed to be secure, such

 cannot exist. Thus it was absurd to assume exists in the first place.

𝒜
𝒜′ 𝒜

𝒜′ 𝒜

The Proof

40

 𝒜′

Our reduction
 (acting as attacker in the PRG security game

and as challenger in the semantic security game)𝒞
PRG challenger

b ← ${0,1}

If b = 0:

If b=1:

s ← ${0,1}S

k = 𝖯𝖱𝖦(s)

k ← ${0,1}L

b′ ← ${0,1}

c

(m0, m1)

b*k

b̃

c = k ⊕ mb′

𝒜

Adversary
in the

semantic-
security game
against (E,D)

if :

 set

if :

 set

b′ = b*
b̃ = 0

b′ ≠ b*
b̃ = 1

If , the ciphertext is the encryption using the PRG cipher. Because we assumed that
wins this game with non negligible probability this means . So wins when does. 
If , encryption is the OTP (perfectly secure), thus has no advantage. So only
guesses correctly with 1/2 probability (0 advantage).

b = 0 c 𝒜
b′ = b* 𝒜′ 𝒜

b = 1 𝒜′ 𝒜 𝒜′

Important observations

The Proof

41

Pr[wins] = Pr[wins AND] + Pr[wins AND]𝒜′ 𝒜′ b = 0 𝒜′ b = 1

= Pr[wins |] Pr[b=0] + Pr[wins |] Pr[b=1]𝒜′ b = 0 𝒜′ b = 1
b = 0
 wins

𝒜′

b = 1

complementary events

conditional
probability Pr[A |B] =

Pr[A ∩ B]
Pr[B]

1/2 1/2

Thus Pr[wins PRG] = Pr[wins sem.sec] (1/2) + 1/2 (1/2)𝒜′ 𝒜 ⋅ ⋅

PRG-cipher OTP-cipher
(perfect security)

Advsem.sec(𝒜) = |Pr[𝒜 wins] −
1
2

|

=
Pr[wins sem.sec game against (E,D)]𝒜

= | (2Pr[𝒜′ wins PRG] − 1/2) −
1
2

|

Or, reorganising the terms: Pr[wins sem.sec] = 2 Pr[wins PRG] - 1/2𝒜 𝒜′

= 2 ⋅ AdvPRG(𝒜′)

The Proof

42

Advsem.sec(𝒜) = |Pr[𝒜 wins] −
1
2

| = | (2Pr[𝒜′ wins PRG] − 1/2) −
1
2

| = 2 ⋅ AdvPRG(𝒜′)

This concludes the proof of the theorem ⬆

🧐 WHY ?

If our PRG-based encryption is not secure then has a non-negligible advantage in
winning the semantic security game. If that was the case, we have constructed an
efficient (PPT) reduction/adversary that uses to win the PRG security game and
has twice the advantage of . Since we assumed the PRG to be secure, it is impossible
for any efficient adversary to break the PRG. So such an cannot exist. Which in turn
implies that cannot exist. So it was absurd to assume such an exists. This
reasoning implies that our PRG-based encryption is provably secure.

𝒜

𝒜′ 𝒜
𝒜

𝒜′

𝒜 𝒜

