
CRYPTOGRAPHY 

(Lecture 2)

Literature: 

“Handbook of Applied Cryptography” (ch 6.1 Note on OTP)
“Lecture Notes on Introduction to Cryptography”  by V. Goyal (ch1.2,1.3, 3.5,3.7,4.0,4.1,4.2)
“A Graduate Course in Applied Cryptography”  by D. Boneh and V. Shoup (ch2-2.2.2, 3.1) 

https://cacr.uwaterloo.ca/hac/
https://www.cs.cmu.edu/~goyal/15356/lecture_notes.pdf
https://crypto.stanford.edu/~dabo/cryptobook/BonehShoup_0_5.pdf


Announcements
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๏ Typo on HA1:  (pdf updated yesterday evening)

๏ For questions on HA1 contact Victor or Oscar 

๏ “Discussions” are now available on Canvas (pairing up)

๏ How do I prepare for the final exam? For now: Solve the weekly exercises

c ∈ {0,1}X



Recap From Last Lecture 

Blockchain Technology 
• Digital Bulletin Boards

• Cryptographic Puzzles & Proof of Work


Perfect Secrecy 
• Symmetric Encryption

• The One Time Pad (OTP) [Proof]

• Perfect Secrecy

• Shannon’s Theorem [Proof]


Pseudorandom Generators (PRG) 
• Definition

• Security

• Secure Encryption From PRG

• Semantic Security [Proof]

Lecture Agenda
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Home Assignment 1

Deadline: Nov 15th (1st Submission)

x

y=H(x)
x’

easy

hard

{0,1}n

{0,1}d, d < nSHA256
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Hash Functions Quick Recap
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Definition: Collision Resistant HASH FUNCTION 

A function  is a collision resistant hash function if:


It is compressing (i.e., ), it is one-way (efficient to compute, hard 
to invert), and


H : {0,1}n → {0,1}d

n > d

Pr[ f(x) = f(x′￼) |x, x′￼ ← 𝒜( f ), x ≠ x′￼] ≤ negl(n)

Collision Resistant Hash Functions are at the Core of how BitCoin works





Basics of Cryptocurrencies
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replace the bank with

miners and 


a bulletin board

Initial challenges 
1) How to create a digital bulletin board (distributed ledger)?

2) How to agree on one ledger view? 



How To Create a Digital Bulletin Board (Distributed Ledger)?
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The main property to implement is record keeping 
1) the past is immutable 

2) everyone agrees on the history

• Partition time into époques / periods / time windows

• Anything that happens in one time period is recorded into a block

• Any change to an ‘old’ block affects all following blocks

how can we implement this property using a 
cryptographic object?

block 0 block 1 block 2 block 3



How To Set Up a Bulletin Board
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block 0 block 1events block 2 block 3

Main property we want to implement = record keeping 
1) the past is immutable 

2) everyone agrees on the history

H(block 0)

events

H(block 1) H(block 2) H(block 3)

prev.block: 
H(block 0)

prev.block: 
H(block 1)

block*1

H(block*1)

events*

prev.block: 
H(block 2)

block*1events*

H(block*1)

prev.block: 
H(block*1)



How To Set Up a Bulletin Board
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block 0 block 1events block 2 block 3

Main property we want to implement = record keeping 
1) the past is immutable 

2) everyone agrees on the history

use the hash function to chain blocks

H(block 0)

events

H(block 1) H(block 2) H(block 3)

prev.block: 
H(block 1)

prev.block: 
H(block 2)

prev.block: 
H(block*1)

block*1events*

H(block*1)

prev.block: 
H(block 0)

H(block 2)

prev.block: 
H(block 2)

H(block 3)

Any change to an ‘old’ block affects all following blocks



How To Set Up a Bulletin Board
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Main property we want to implement = record keeping 
1) the past is immutable 

2) everyone agrees on the history

• Always build on the longest branch (longest chain rule)

• How to lower the chance that blocks appear at the same time?

block 0 block 1 block 2

block 4block 3

block 4’block 3’

fork

Proof of Work

block 5

winning branch
CONSENSUS

block 6



Proof of Work (Cryptographic Hash Puzzles)
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block 0 block 1 block 2 block 3

put a rule that makes it “hard” to 
compute a “good” hash digest

H(block 0)

events

H(block 1) H(block 2) H(block 3)

prev.block: 
H(block 1)

prev.block: 
H(block 2)

prev.block: 
H(block 0)

RULE : EACH BLOCK HASH NEEDS TO START WITH A GIVEN PREFIX

Main property we want to implement = record keeping 
1) the past is immutable 

2) everyone agrees on the history

sha256(I love Crypto!) = e8f6178df67ea4ec791b9fd72a2d710a3d832c113ee933a0654ae0e423d49ac9

sha256(I love Crypto!-251509386766) = 0000092273023b5bc71c29852a01d0121336c16e700535cca2a8c5ef1459becd

find a value nonce such that H(block||nonce) = 00000****

nonce 1 nonce 2 nonce 3



block 0 block 1 block 2 block 3

Example: Bitcoin
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genesis block
created by Nakamoto
on 03.01.2009

époque ~ 10 mins

block size < 1M
B


~ 7 trxn per second

transactions
for époque 1

H(block 1)

prev.block: 
H(block 0)

nonce 1

set by the puzzle difficulty 
(currently 19 leading zeroes)

🧐 How large is the BitCoin Ledger?

https://www.statista.com/statistics/647523/worldwide-bitcoin-blockchain-size/
http://www.apple.com/uk
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Secure Communication Over an Insecure Channel
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♫
?



Secure Communication Over an Insecure Channel
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𝒜

message

“  should not learn the message”𝒜

 What’s  goal? 


 What are  resources?


 What does security mean?


 What can Alice and Bob use?

𝒜

𝒜′￼s

Let’s start with: a symmetric encryption scheme



Symmetric Encryption - Syntax
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Definition: Symmetric Encryption  

A tuple (KeyGen, E, D) is a symmetric encryption scheme over the sets  
(key space), (message space), and  (cihpertext space) if all algorithms 
are efficient and satisfy the following:


KeyGen(1^n) → k : the key generation is a randomised algorithm that 
returns a key k. (This algorithm is often implicit when )

E(k,m) → c : the encryption is a possibly randomised algorithm that on 
input a key k and a (plaintext) message m, outputs a ciphertext c. 

D(k,c) → m : the decryption is a deterministic algorithm that on input a key 
k and ciphertext c, outputs a plaintext message m.

𝒦
ℳ 𝒞

k ← $𝒦

CORRECTNESS: 

…. for all messages m ∈ ℳPr[ |k ← KeyGen(1n)] = 1D(k, E(k, m)) = m



Symmetric Encryption - Visualisation 
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KeyGen

E D

k

m m

k

c

correctness

=



Symmetric Encryption - the One Time Pad (OTP)

19

Definition: Symmetric Encryption  

A tuple (KeyGen, Enc, Dec) is a symmetric encryption scheme over the 
sets  (key space), (message space), and  (cihpertext space) if all 
algorithms are efficient and satisfy the following:


KeyGen(1^n) → k : the key generation is a randomised algorithm that 
returns a key k. (This algorithm is often implicit when )

E(k,m) → c : the encryption is a possibly randomised algorithm that on 
input a key k and a (plaintext) message m, outputs a ciphertext c. 

D(k,c) → m : the decryption is a deterministic algorithm that on input a key 
k and ciphertext c, outputs a plaintext message m.

𝒦 ℳ 𝒞

k ← $𝒦

Example: the One Time Pad (OTP) 









𝒦 = ℳ = 𝒞 = {0,1}n

KeyGen(1n) → k (where k ← ${0,1}n)
E(k, m) = k ⊕ m
D(k, c) = k ⊕ c

CORRECTNESS: 

…. for all messages m ∈ ℳPr[ |k ← KeyGen(1n)] = 1D(k, E(k, m)) = m



OTP From the Attacker’s Point of View
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 ⊕k c=mUniformly 
random 

key 

Uniformly 
random 

ciphertext 

⊕ =



Secure Communication Over an Unsecured Channel
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𝒜
“  should not learn the message”𝒜

 What’s  goal? 


 What are  resources?


 What does security mean?

𝒜

𝒜′￼s

E(k, m) → c

k k

D(k, c) = m

c

 … Using Symmetric Encryption 

“The ciphertext  should not leak any information about the message ”c m



Perfect Secrecy 
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Definition: Perfect Secrecy (Perfect Security) 

A symmetric encryption scheme  is perfectly secret if for 
all pair of messages  and for all ciphertexts  it holds that:


(KeyGen, E, D)
m0, m1 ∈ ℳ c

Pr[E(k, m0) → c |k ← KeyGen(1n)]

This security notions essentially states that: 
An attacker who does not know k learns nothing new about the plaintext m from seeing c. 

= Pr[E(k, m1) → c |k ← KeyGen(1n)]

This is an example of unconditional security



The OTP Is Perfectly Secret
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Proof: In the OTP, for every m and c there is exactly one key k(= m ⊕ c) such that c = E(k, m). 
Thus Pr[c = E(k, m)] = 1/| |.  
𝒦

Case n = 1

Hence: Pr[E(k, m0) → c |k ← KeyGen(1n)] =
1

|𝒦 |
= Pr[E(k, m1) → c |k ← KeyGen(1n)]



One Time Pad: Problems
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1- The key is as long as the message 

2- The key should only be used to encrypt ONE message

3- The ciphertext is (intentionally!) malleable

𝒜E(k, m) → c D(k, c*) = m ⊕ e
c c* = c ⊕ e



Shannon’s Theorem
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Theorem (Shannon 1940s) 

A symmetric encryption scheme  define over has 
perfect security if and only if .

(KeyGen, E, D) (𝒦, ℳ, 𝒞)
|𝒦 | ≥ |ℳ |

Proof: Fix an arbitrary  and , and let . Since the cipher 
has perfect secrecy, for any  we have when  that 


. 

Thus for each  there is a key  such that . 

But these keys must all be different; if there was a key and plaintexts  and  such 
that , then we lose correctness (the decryption of  for that 
key becomes ambiguous). Thus . 


m0 ∈ M k0 ∈ K c0 = E(k0, m0)
m ∈ M k ← $𝒦

Pr[c0 = E(k, m)] = Pr[c0 = E(k, m0)] > 0
m ∈ ℳ k ∈ 𝒦 E(k, m) = c0

k m1 m2
E(k, m1) = E(k, m2) = c0 c0

|𝒦 | ≥ |ℳ |

Take away: perfect security is impractical  



How close to perfect security can 
we go, while being practical?



A Little Secret: the Core of Crypto Is Randomness
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The perfect secrecy of OTP comes from using one random key to mask/hide one message

We cannot reuse the key (otherwise we lose security) but can we ‘expand’ it?

This is the 
goal of 
Pseudo 
Random 
Generators 
(PRG)
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Pseudo Random Generators (PRG)
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Definition: PRG  

A Pseudo Random Generator is a deterministic, efficiently computable  
function   that on input a seed  of  bits, 
outputs a sequence of . Moreover, for  no efficient 
adversary can tell apart  from a random string . 

𝖯𝖱𝖦 : {0,1}S → {0,1}L s S
L > S s ← ${0,1}S

𝖯𝖱𝖦(s) l ← ${0,1}L

The best way to check if a candidate algorithm is a PRG is by running a series of tests, 
there is no mathematical proof!                                                     But we can reason about the security of a PRG using a 
formal (mathematical) security game.



Pseudo Random Generators (PRG)
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The best way to check if a candidate algorithm is a PRG is by running a series of tests, 
there is no mathematical proof!                                                     But we can reason about the security of a PRG 
using a formal (mathematical) security game.



“Real OR Random” Security (Intuition)

31https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DzGLx_mLLu0c&psig=AOvVaw2apYsTgLReXypLHAZ3jP-3&ust=1650024734701000&source=images&cd=vfe&ved=2ahUKEwixrN2iw5P3AhXYZfEDHcXCDJcQjhx6BAgAEAw

https://www.youtube.com/watch?v=zGLx_mLLu0c


Security Game For PRG
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 wins the security game if .

If ,  loses the game.

𝒜 b* = b
b* ≠ b 𝒜

𝒞
 challenger 

Aim: quantify the attacker’s likelihood in distinguishing 
PRG from a source of uniform randomness over  {0,1}L

b ← ${0,1}

If :

  

  

  

If :

  

b = 0
s ← ${0,1}S

k = 𝖯𝖱𝖦(s)

b = 1
k ← ${0,1}L

𝖯𝖱𝖦( ⋅ )

k

𝒜

adversary 

b*

win or lose



Security Game For PRG
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Definition: Secure PRG 

A pseudo random function   is a secure PRG if 
any PPT attacker  has only negligible advantage in winning the 
secure PRG game. Formally, 


 

𝖯𝖱𝖦 : {0,1}S → {0,1}L

𝒜

Adv(𝒜) = |Pr[𝒜 wins] −
1
2

| < negl(S)

Verbose description of the PRG security game
1. The challenger  draws a uniformly random bit .

2. If , the challenger draws a random seed   and computes .  

If , the challenger draws a uniformly random string . 

3.  sends  to . 

4.  tries to determine  from , and eventually (within polynomial time) returns its guess .

5.  sends  to the . The adversary wins if ′.

𝒞 b ← ${0,1}
b = 0 s ← ${0,1}S k = 𝖯𝖱𝖦(s)
b = 1 k ← ${0,1}L

𝒞 k 𝒜
𝒜 b k b*
𝒜 b* 𝒞 b* = b



Construct a Secure Encryption Scheme From a PRG

34

A generic PRG 


𝖯𝖱𝖦 : {0,1}S → {0,1}L

𝖯𝖱𝖦(s) = k

A One-time PRG cipher 









ℳ = C = {0,1}L, 𝒦 = {0,1}S, S < L
KeyGen(1S) → s (where s ← ${0,1}S)
Enc(s, m) = 𝖯𝖱𝖦(s) ⊕ m
Dec(s, c) = 𝖯𝖱𝖦(s) ⊕ c

KeyGen

E D

s ← ${0,1}S
s

m m

s

c

PRG

k

PRG

k

⊕ ⊕

🧐 Does this cipher 
have perfect security?

We need a new security definition 
that works when |𝒦 | < |ℳ |



“Left OR Right” Security (Intuition)
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Semantic Security
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Aim: quantify the attacker’s likelihood in distinguishing an encryption of a (chosen) message  
from an encryption of another (chosen) message 

m0
m1

𝒞
 challenger 

If :

  

If :

  

b = 0
c ← E(k, m0)
b = 1
c ← E(k, m1)

(KeyGen, E, D)

c


(m0, m1)
s . t . |m0 | = |m1 |

k ← KeyGen(1n)
b ← ${0,1}

 wins the security game if .

If ,  loses the game 

𝒜 b* = b
b* ≠ b 𝒜

𝒜

adversary 

win or lose

b*



Semantic Security for Symmetric Encryption
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Definition: Semantic security 

A symmetric encryption scheme is semantically secure if any PPT attacker  
has only negligible advantage in winning the semantic security game. Formally, 


 

𝒜

Adv(𝒜) = |Pr[𝒜 wins] −
1
2

| < negl(n)

Verbose description of the semantic security game

1. The challenger  generates a key  and draws a random bit .

2. The adversary  chooses two messages  of the same length and sends them to .

3.  encrypts  according to the bit drawn in step 1, and returns  to .

4.  tries to determine  from ,  and .

5.  sends  to the . The adversary wins if ′.

𝒞 k ← KeyGen(1n) b ← ${0,1}
𝒜 m0, m1 𝒞

𝒞 mb c = Enc(k, mb) 𝒜
𝒜 b c m0, m1
𝒜 b* 𝒞 b* = b



Remarks on the Definition
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๏ We don’t expect the encryption scheme to hide the length of the plaintext;  
(hence   and  must have the same length).


๏ An attacker who just guesses, choosing a random , has advantage 0. 

๏ An attacker who always answers  (or ) also has advantage 0. 

๏ If the encryption scheme is the one time pad, any attacker has advantage 0. 

m0 m1
b* ← ${0,1}

b* = 1 b* = 0

Definition: Semantic security 

A symmetric encryption scheme is semantically secure if any PPT attacker  
has only negligible advantage in winning the semantic security game. Formally, 


 

𝒜

Adv(𝒜) = |Pr[𝒜 wins] −
1
2

| < negl(n)



Proving our Construction Is Semantically Secure
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If  is a secure PRG, then the cipher defined by 
 is semantically secure. 


Formally, for any efficient :  

𝖯𝖱𝖦 : {0,1}S → {0,1}N

Enc(s, m) = 𝖯𝖱𝖦(s) ⊕ m; Dec(s, c) = 𝖯𝖱𝖦(s) ⊕ c
𝒜 Advsem.sec(𝒜) = |Pr[𝒜 wins] −

1
2

| < negl(S)

Proof Plan: 
We must prove that any efficient adversary against the encryption’s semantical security 
has negligible advantage, without knowing anything about the adversary’s strategy.

…or…  proof by reduction to absurd 
🧐 HOW ?

Assume that there exists an adversary  that can break the semantic 
security of the encryption. Then we build a new adversary  that uses  
to break the security of the PRG. Since PRG is assumed to be secure, such 

 cannot exist. Thus it was absurd to assume  exists in the first place.

𝒜
𝒜′￼ 𝒜

𝒜′￼ 𝒜



The Proof
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 𝒜′￼

Our reduction 
 (acting as attacker in the PRG security game 

and as challenger in the semantic security game)𝒞
PRG challenger 

b ← ${0,1}

If b = 0:

  

  

  

If b=1:

  

s ← ${0,1}S

k = 𝖯𝖱𝖦(s)

k ← ${0,1}L

b′￼ ← ${0,1}

c

(m0, m1)

b*k

b̃

c = k ⊕ mb′￼

𝒜

Adversary  
in the  

semantic-
security game 
against (E,D)

if :

   set 

if :

   set 

b′￼ = b*
b̃ = 0

b′￼ ≠ b*
b̃ = 1

If , the ciphertext  is the encryption using the PRG cipher. Because we assumed that  
wins this game with non negligible probability this means . So  wins when  does. 
If ,  encryption is the OTP (perfectly secure), thus  has no advantage. So  only 
guesses correctly with 1/2 probability (0 advantage).

b = 0 c 𝒜
b′￼ = b* 𝒜′￼ 𝒜

b = 1 𝒜′￼ 𝒜 𝒜′￼

Important observations



The Proof
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Pr[  wins] = Pr[  wins AND ] + Pr[  wins AND ]𝒜′￼ 𝒜′￼ b = 0 𝒜′￼ b = 1

= Pr[  wins | ] Pr[b=0] + Pr[  wins | ] Pr[b=1]𝒜′￼ b = 0 𝒜′￼ b = 1
b = 0
 wins

𝒜′￼

b = 1

complementary events

conditional 
probability Pr[A |B] =

Pr[A ∩ B]
Pr[B]

1/2 1/2

Thus Pr[  wins PRG] = Pr[  wins sem.sec]  (1/2) + 1/2  (1/2)𝒜′￼ 𝒜 ⋅ ⋅

PRG-cipher OTP-cipher
(perfect security)

Advsem.sec(𝒜) = |Pr[𝒜 wins] −
1
2

|

= 
Pr[  wins sem.sec game against (E,D)]𝒜

= | (2Pr[𝒜′￼ wins PRG] − 1/2) −
1
2

|

Or, reorganising the terms: Pr[  wins sem.sec] = 2 Pr[  wins PRG] - 1/2𝒜 𝒜′￼

= 2 ⋅ AdvPRG(𝒜′￼)



The Proof
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Advsem.sec(𝒜) = |Pr[𝒜 wins] −
1
2

| = | (2Pr[𝒜′￼ wins PRG] − 1/2) −
1
2

| = 2 ⋅ AdvPRG(𝒜′￼)

This concludes the proof of the theorem ⬆

🧐 WHY ?

If our PRG-based encryption is not secure then  has a non-negligible advantage in 
winning the semantic security game. If that was the case, we have constructed an 
efficient (PPT) reduction/adversary  that uses  to win the PRG security game and 
has twice the advantage of . Since we assumed the PRG to be secure, it is impossible 
for any efficient adversary to break the PRG. So such an  cannot exist. Which in turn 
implies that  cannot exist. So it was absurd to assume such an  exists. This 
reasoning implies that our PRG-based encryption is provably secure.

𝒜

𝒜′￼ 𝒜
𝒜

𝒜′￼

𝒜 𝒜


