CRYPTOGRAPHY

Literature:

"Handbook of Applied Cryptography" (ch 6.1 Note on OTP)

(Lecture 2)

"<u>'Lecture Notes on Introduction to Cryptography</u>" by V. Goyal (ch1.2,1.3, 3.5,3.7,4.0,4.1,4.2) "<u>A Graduate Course in Applied Cryptography</u>" by D. Boneh and V. Shoup (ch2-2.2.2, **3.1**)

Announcements

- Typo on HA1: $c \in \{0,1\}^X$ (pdf updated yesterday evening)
- For questions on HA1 contact Victor or Oscar
- "Discussions" are now available on Canvas (pairing up)
- How do I prepare for the final exam? For now: Solve the weekly exercises

Lecture Agenda

Recap From Last Lecture

Blockchain Technology

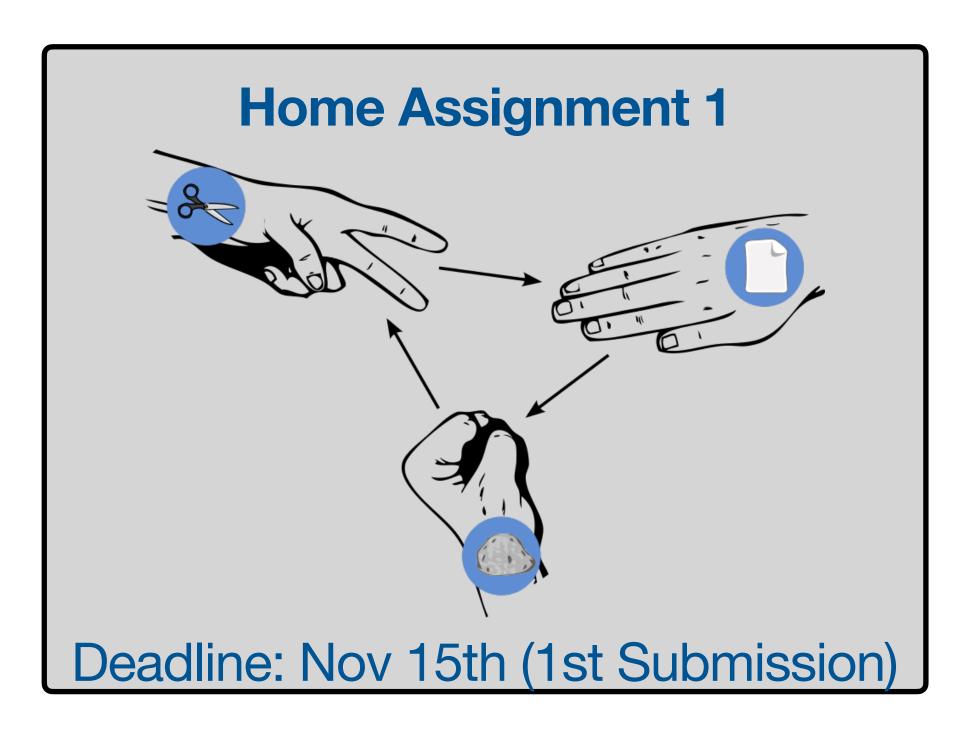
- Digital Bulletin Boards
- Cryptographic Puzzles & Proof of Work

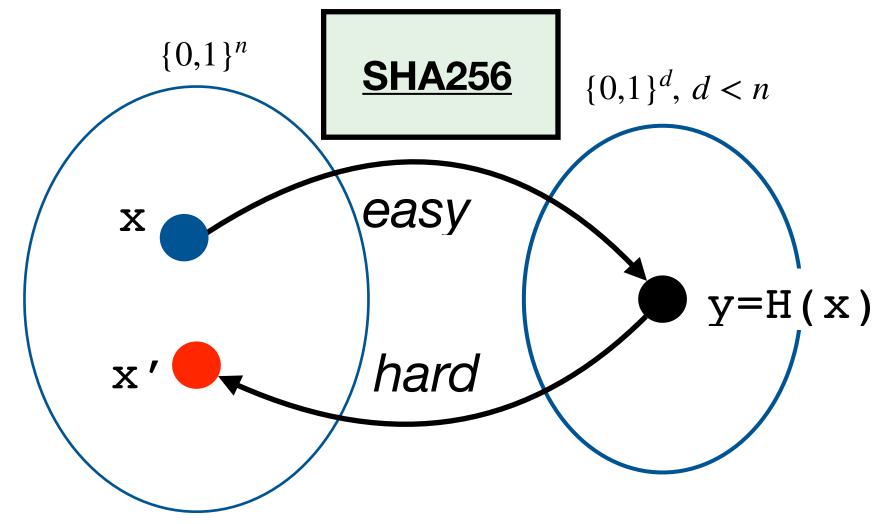
Perfect Secrecy

- Symmetric Encryption
- The One Time Pad (OTP) [Proof]
- Perfect Secrecy
- Shannon's Theorem [Proof]

Pseudorandom Generators (PRG)

- Definition
- Security
- Secure Encryption From PRG
- Semantic Security [Proof]





Lecture Agenda

Recap From Last Lecture

Blockchain Technology

- Digital Bulletin Boards
- Cryptographic Puzzles & Proof of Work

Perfect Secrecy

- Symmetric Encryption
- The One Time Pad (OTP) [Proof]
- Perfect Secrecy
- Shannon's Theorem [Proof]

Pseudorandom Generators (PRG)

- Definition
- Security
- Secure Encryption From PRG
- Semantic Security [Proof]

Hash Functions Quick Recap

Definition: Collision Resistant HASH FUNCTION

A function $H: \{0,1\}^n \rightarrow \{0,1\}^d$ is a collision resistant hash function if: It is compressing (i.e., n > d), it is one-way (efficient to compute, hard to invert), and

$$Pr[f(x) = f(x') | x, x' \leftarrow \mathscr{A}(f), x$$

$x \neq x' \leq negl(n)$

Collision Resistant Hash Functions are at the Core of how BitCoin works

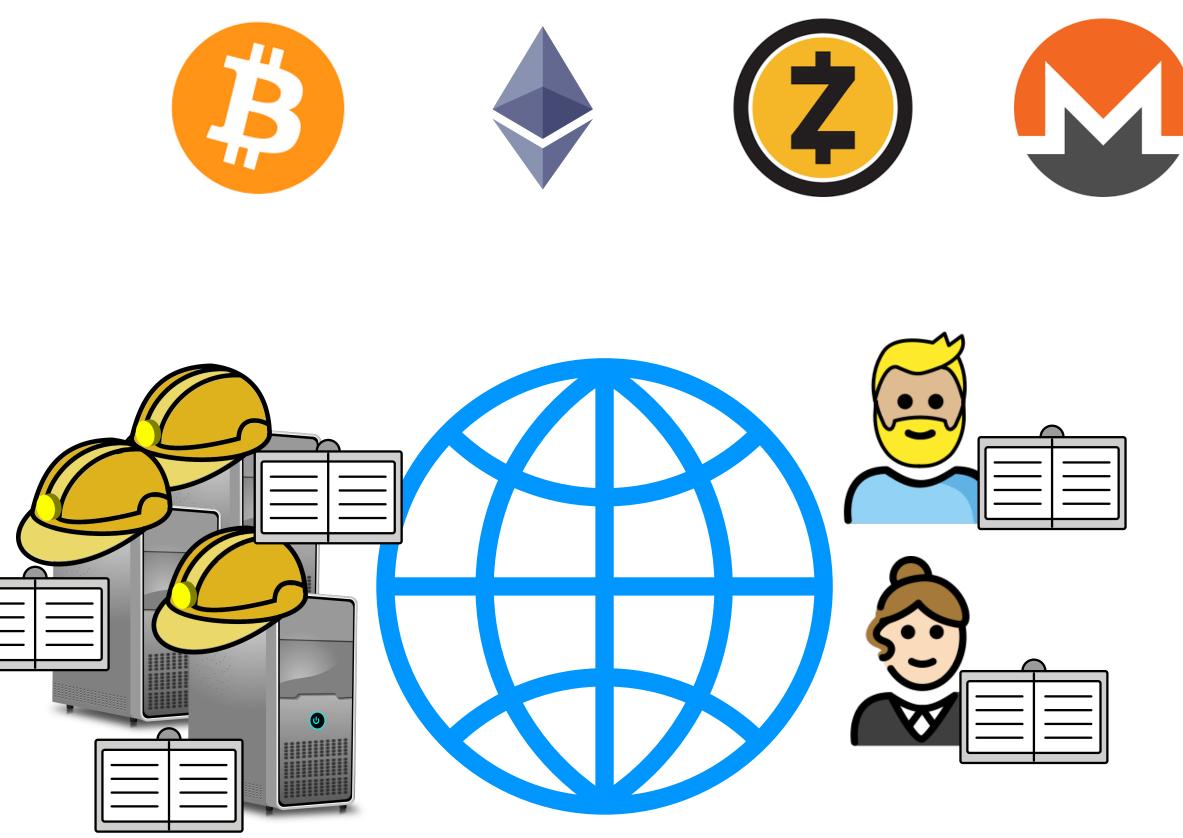
Basics of Cryptocurrencies

replace the bank with miners and a bulletin board

1		
	II —	

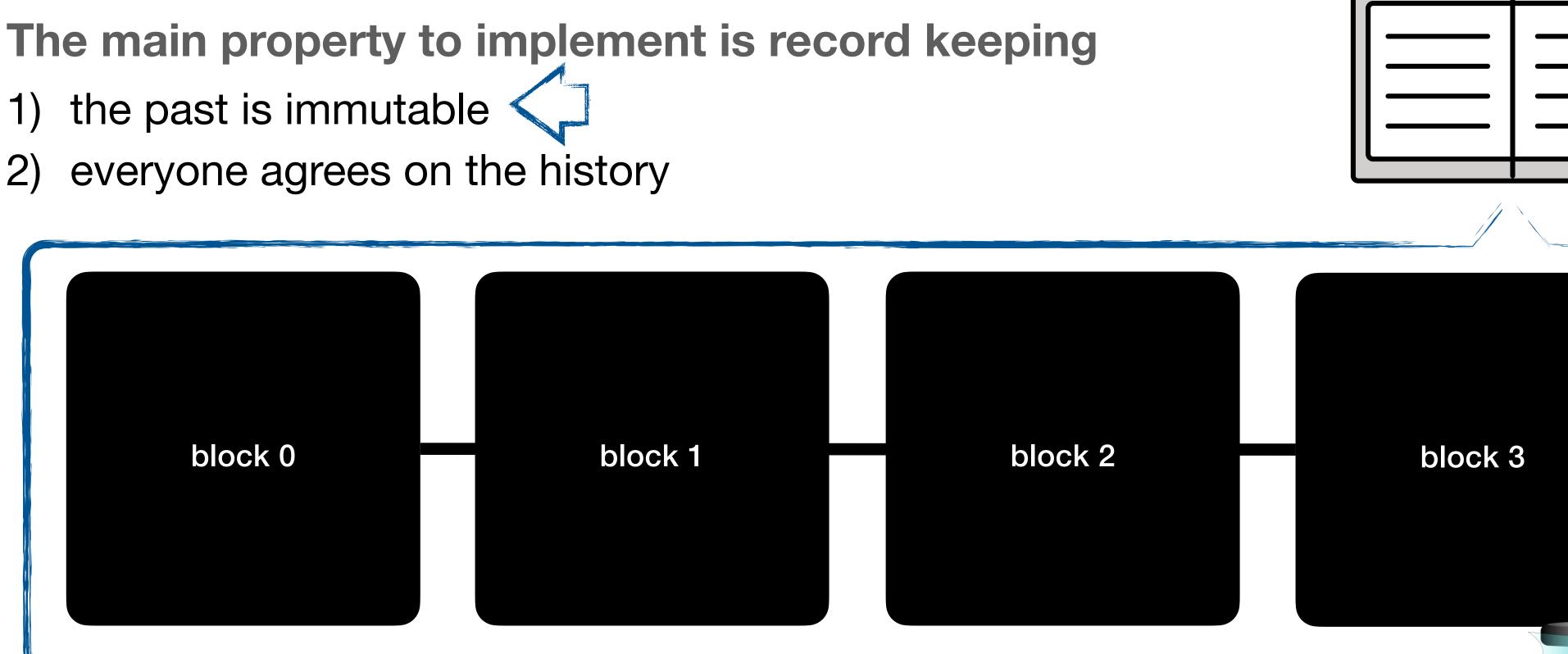
Initial challenges

1) How to create a digital bulletin board (distributed ledger)? 2) How to **agree** on **one** ledger view?



How To Create a Digital Bulletin Board (Distributed Ledger)?

- 1) the past is immutable <
- 2) everyone agrees on the history



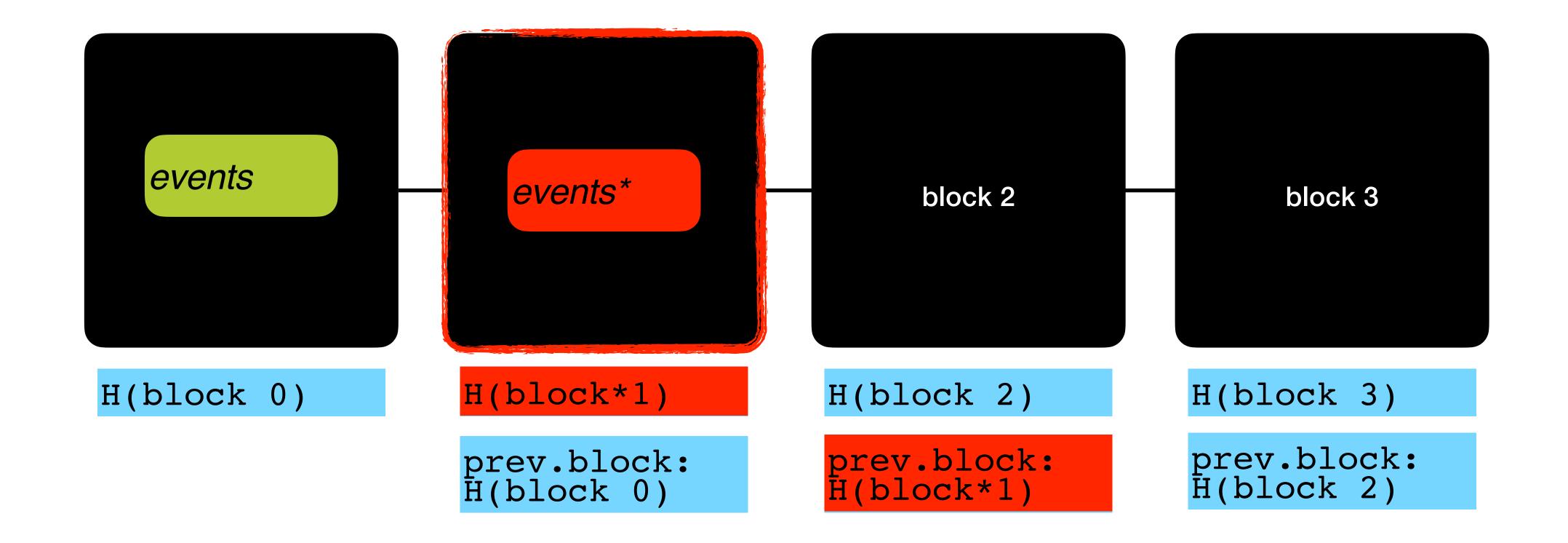
- Partition time into époques / periods / time windows
- Anything that happens in one time period is recorded into a block
- Any change to an 'old' block affects all following blocks

how can we implement this property using a cryptographic object?

How To Set Up a Bulletin Board

Main property we want to implement = record keeping

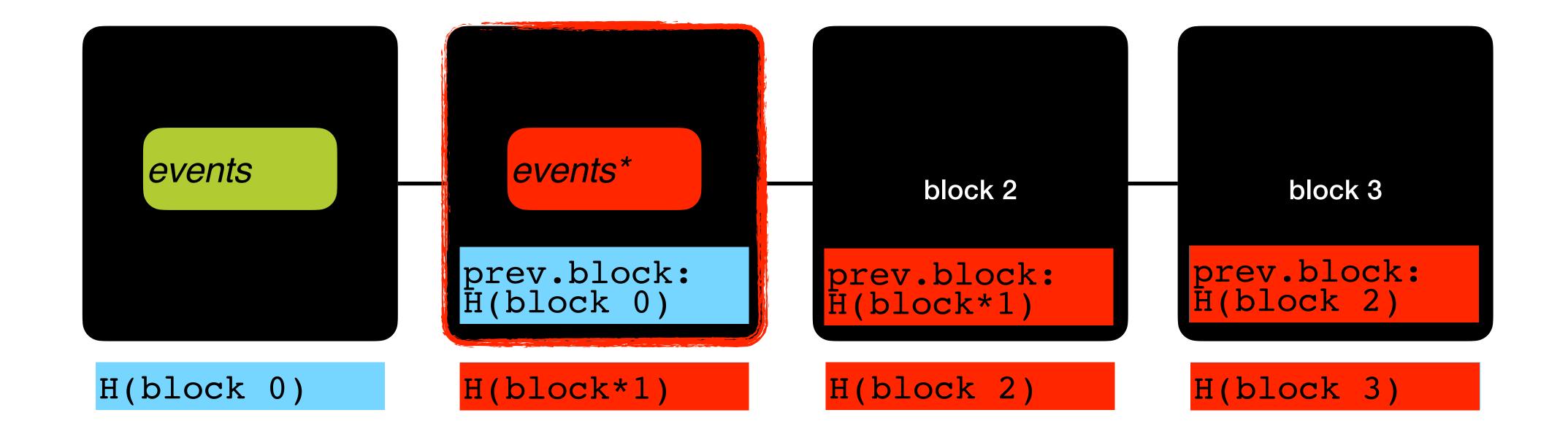
- 1) the past is immutable
- 2) everyone agrees on the history



How To Set Up a Bulletin Board

Main property we want to implement = record keeping

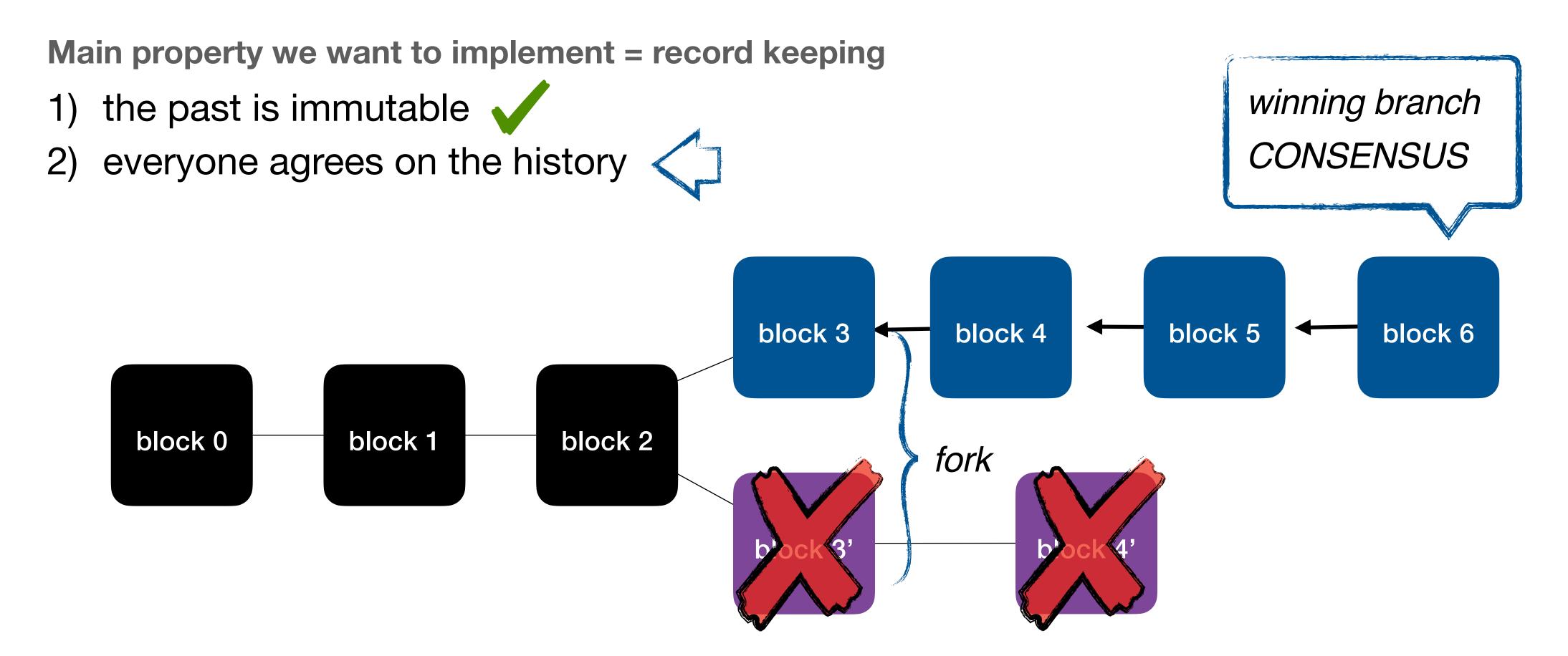
- 1) the past is immutable
- 2) everyone agrees on the history



use the hash function to chain blocks

Any change to an 'old' block affects all following blocks

How To Set Up a Bulletin Board



- Always build on the longest branch (longest chain rule)
- How to lower the chance that blocks appear at the same time?

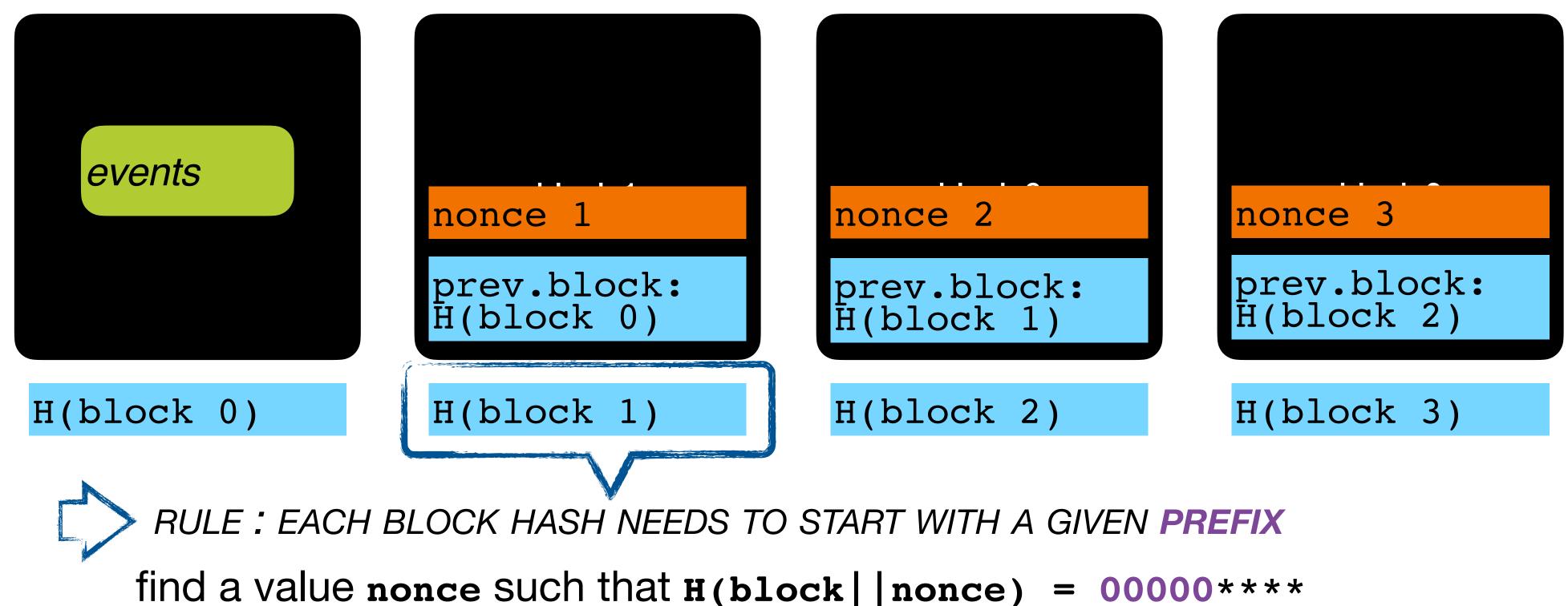
Proof of Work

11

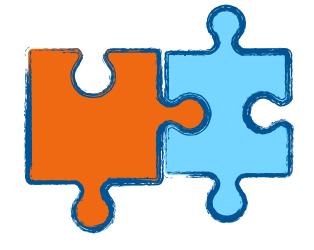
Proof of Work (Cryptographic Hash Puzzles)

Main property we want to implement = record keeping

- 1) the past is immutable
- 2) everyone agrees on the history

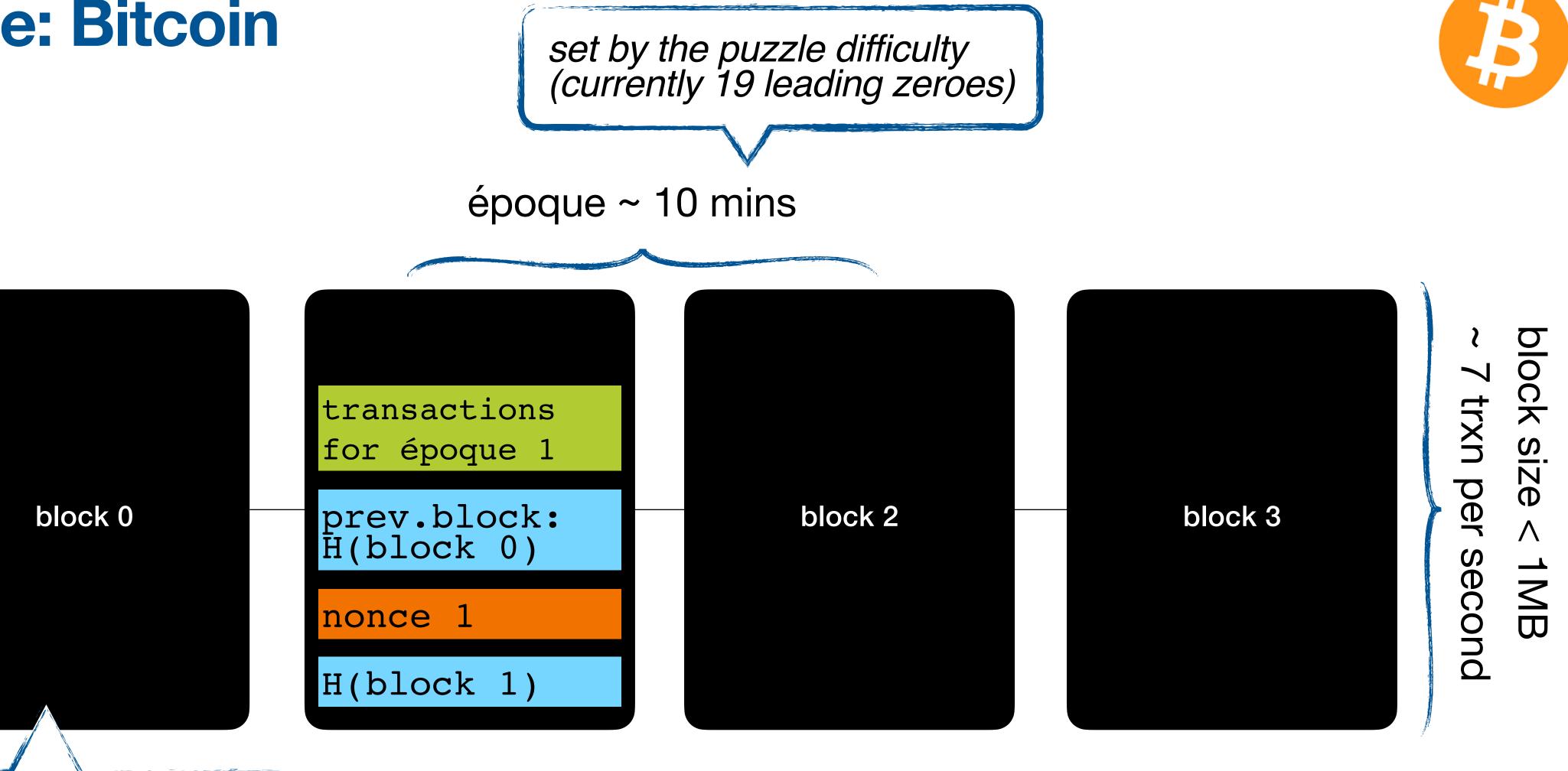


sha256(I love Crypto!) = e8f6178df67ea4ec791b9fd72a2d710a3d832c113ee933a0654ae0e423d49ac9 sha256(I love Crypto!-251509386766) = 0000092273023b5bc71c29852a01d0121336c16e700535cca2a8c5ef1459becd



put a rule that makes it "hard" to compute a "good" hash digest

Example: Bitcoin



genesis block created by Nakamoto on 03.01.2009

Output Description of the second s

Lecture Agenda

Recap From Last Lecture

Blockchain Technology

- Digital Bulletin Boards
- Cryptographic Puzzles & Proof of Work

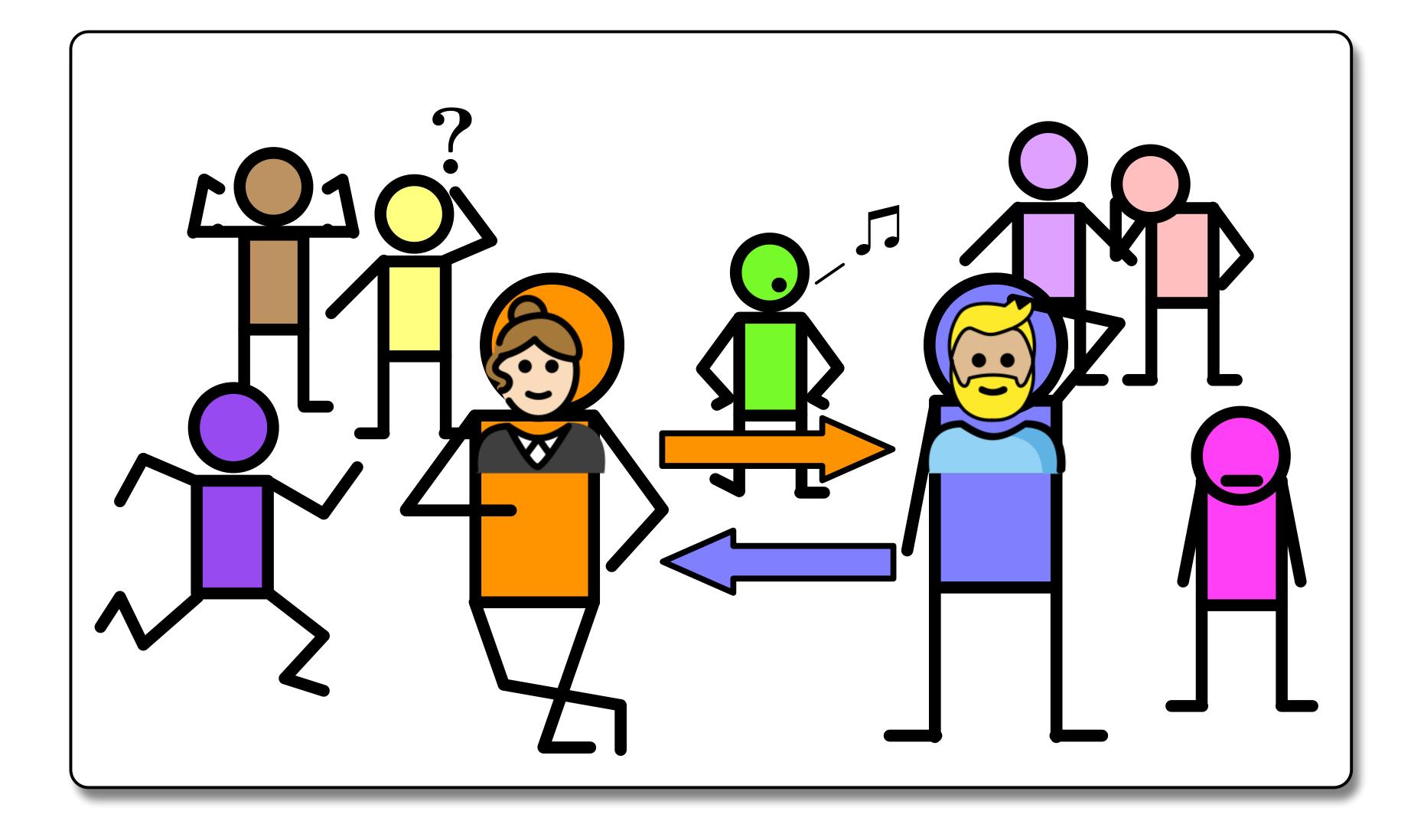
Perfect Secrecy

- Symmetric Encryption
- The One Time Pad (OTP) [Proof]
- Perfect Secrecy
- Shannon's Theorem [Proof]

Pseudorandom Generators (PRG)

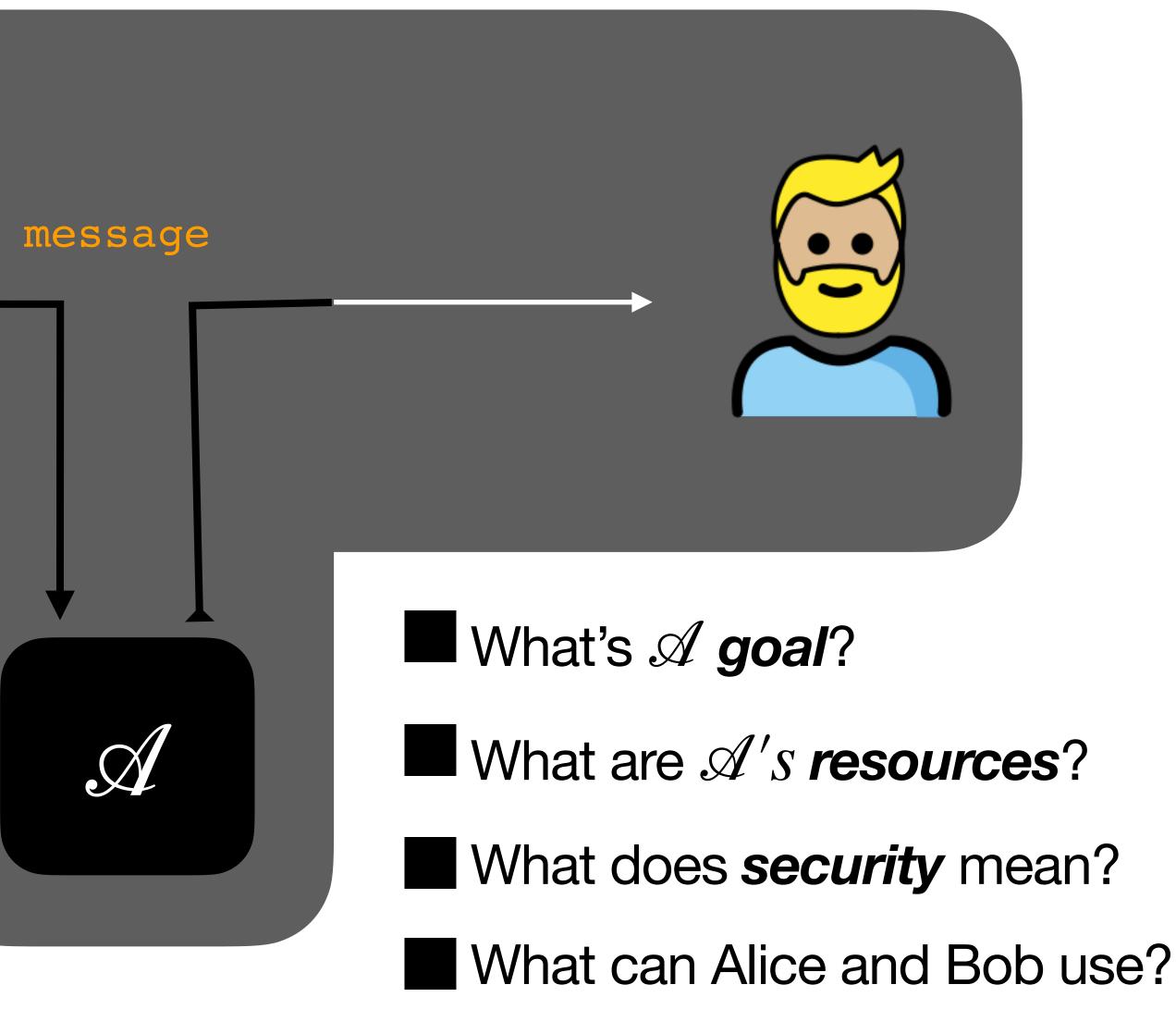
- Definition \bullet
- Security
- Secure Encryption From PRG
- Semantic Security [Proof]

Secure Communication Over an Insecure Channel



Secure Communication Over an Insecure Channel

"A should not learn the message"



Let's start with: a symmetric encryption scheme 16

Symmetric Encryption - Syntax

Definition: Symmetric Encryption

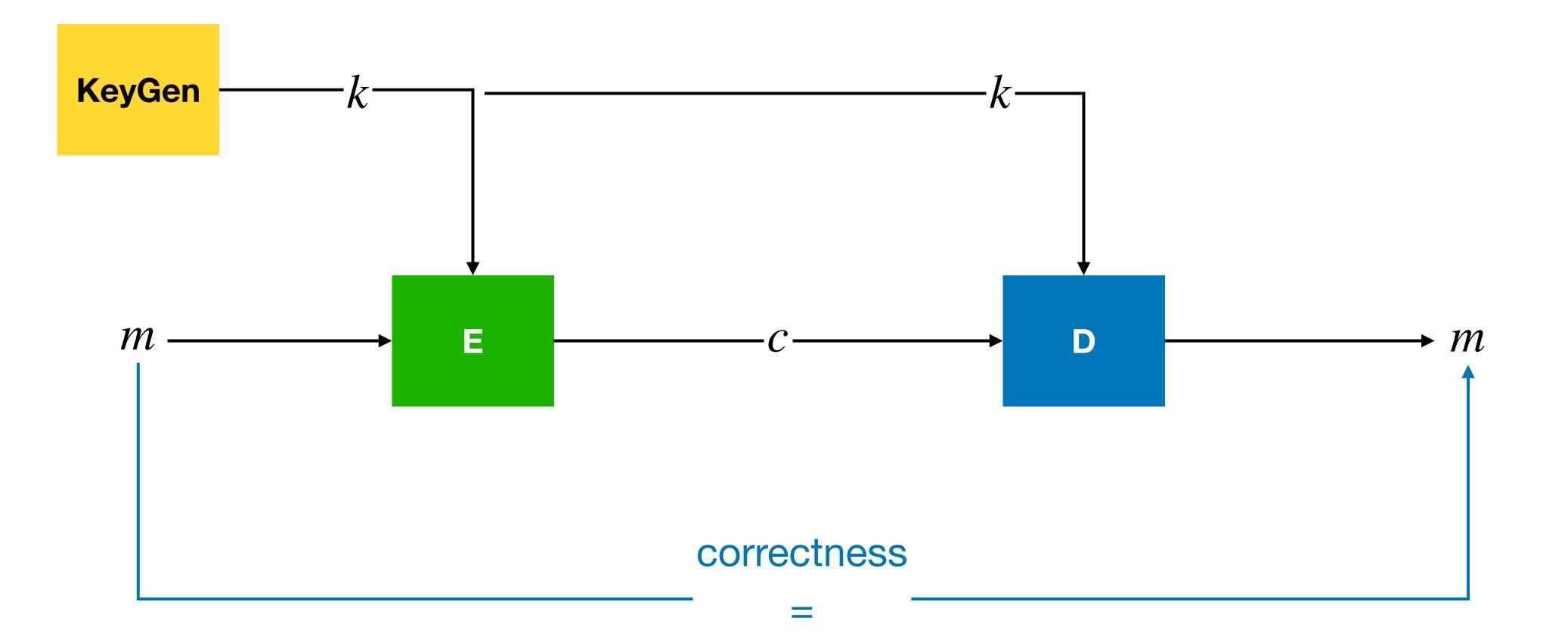
A tuple (KeyGen, E, D) is a symmetric encryption scheme over the sets \mathscr{K} (key space), \mathscr{M} (message space), and \mathscr{C} (cihpertext space) if all algorithms are efficient and satisfy the following:

KeyGen(1^n) \rightarrow **k** : the key generation is a randomised algorithm that returns a key k. (This algorithm is often implicit when $k \leftarrow \$\mathscr{K}$) **E(k,m)** \rightarrow **c** : the encryption is a possibly randomised algorithm that on input a key k and a (plaintext) message m, outputs a ciphertext c. **D(k,c)** \rightarrow **m** : the decryption is a deterministic algorithm that on input a key k and ciphertext c, outputs a plaintext message m.

CORRECTNESS:

 $Pr[D(k, E(k, m)) = m | k \leftarrow KeyGen(1^n)] = 1 \dots$ for all messages $m \in \mathcal{M}$

Symmetric Encryption - Visualisation



Symmetric Encryption - the One Time Pad (OTP)

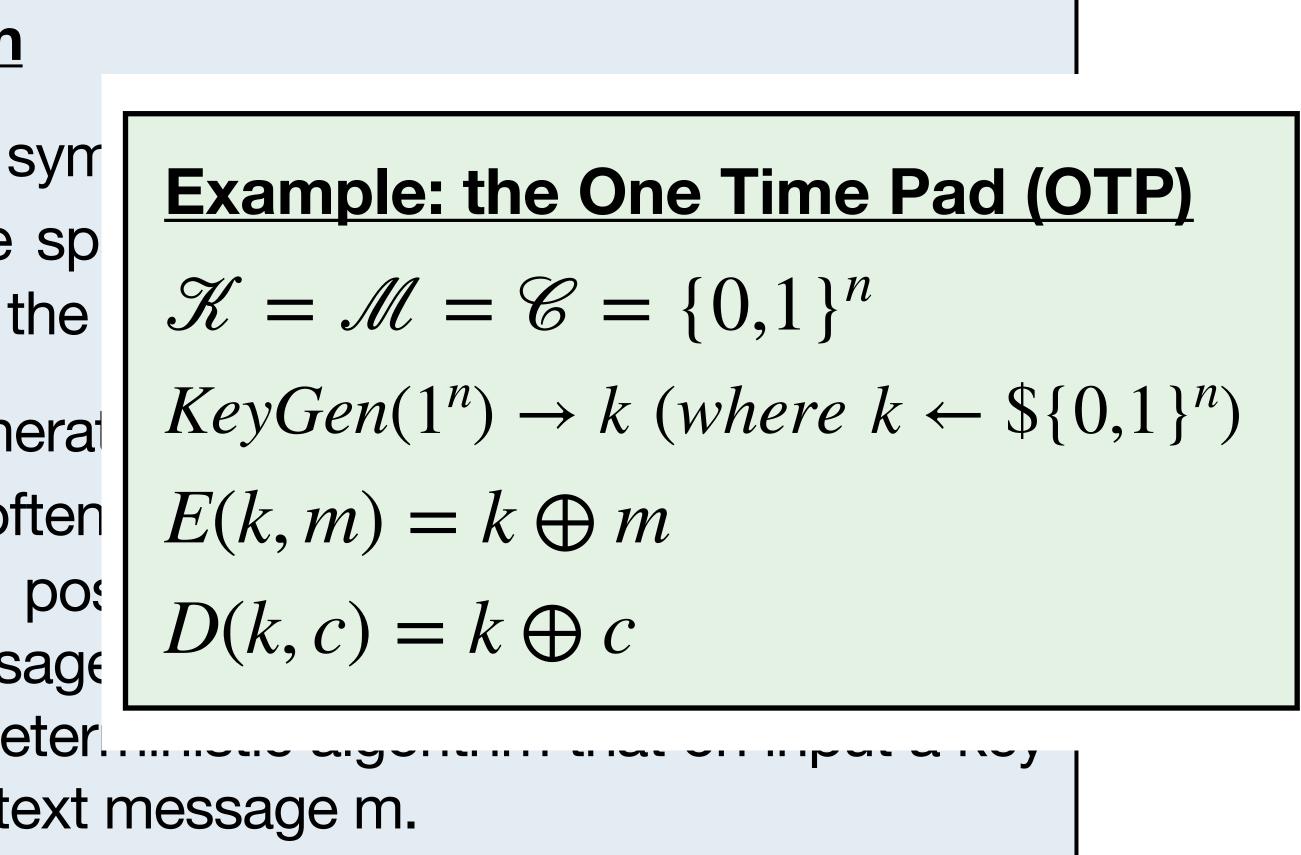
Definition: Symmetric Encryption

A tuple (KeyGen, Enc, Dec) is a symmetry sets \mathscr{K} (key space), \mathscr{M} (message space) algorithms are efficient and satisfy the

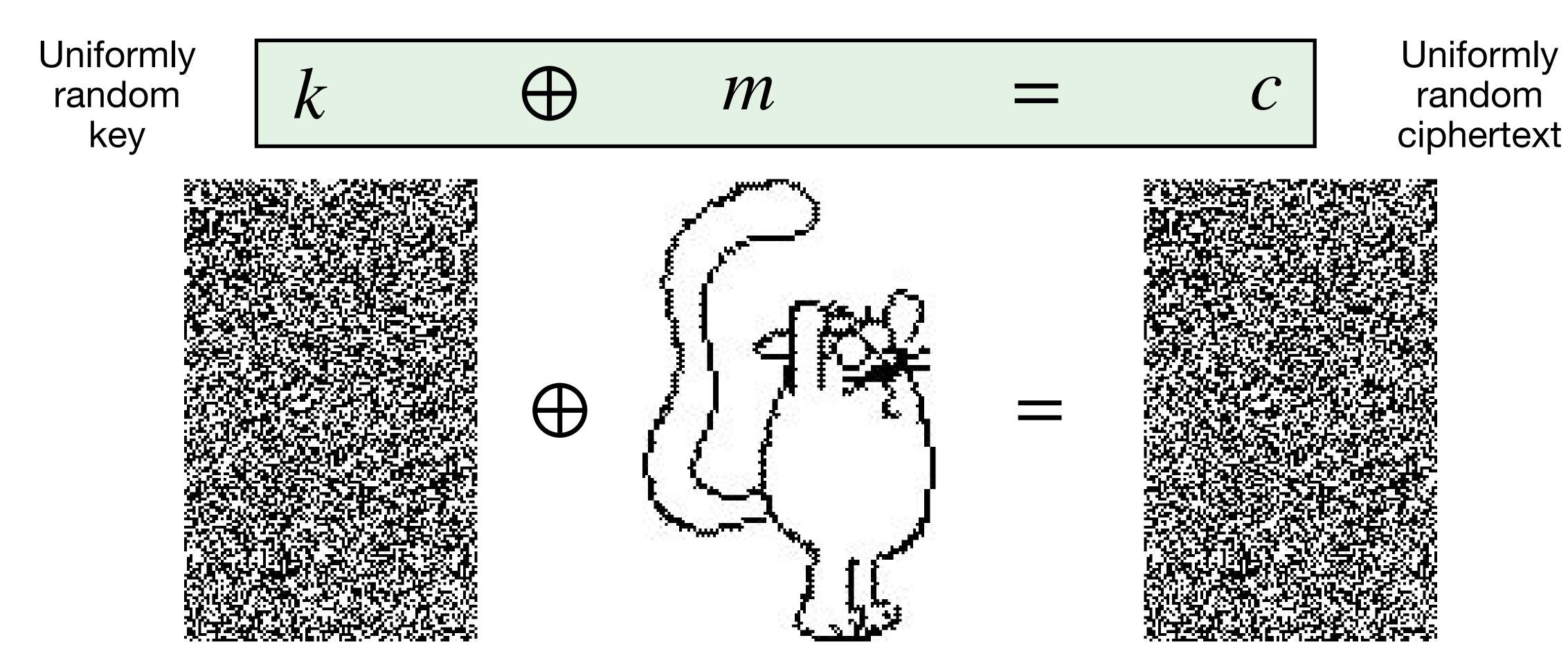
KeyGen(1^n) \rightarrow **k** : the key general returns a key k. (This algorithm is often **E(k,m)** \rightarrow **c** : the encryption is a positive input a key k and a (plaintext) message **D(k,c)** \rightarrow **m** : the decryption is a determined by the decryption by the decr

CORRECTNESS:

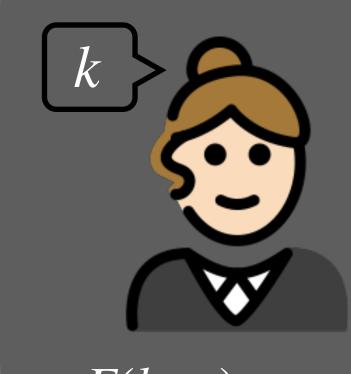
 $Pr[D(k, E(k, m)) = m | k \leftarrow KeyGen(1^n)] = 1 \dots \text{ for all messages } m \in \mathcal{M}$



OTP From the Attacker's Point of View



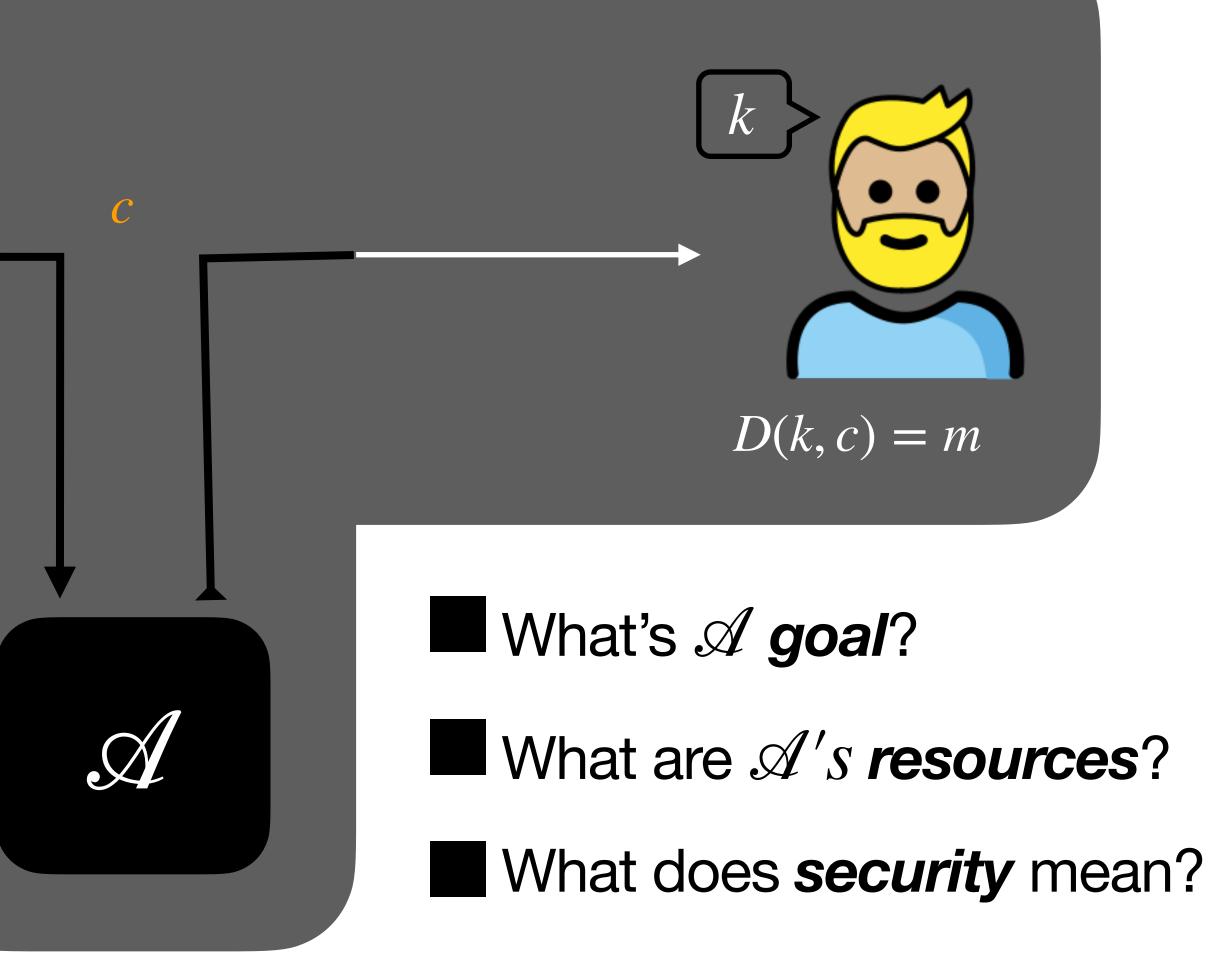
Secure Communication Over an Unsecured Channel ... Using Symmetric Encryption



$E(k,m) \to c$

"A should not learn the message"

"The ciphertext c should not leak any information about the message m"



Perfect Secrecy

Definition: Perfect Secrecy (Perfect Security)

A symmetric encryption scheme (KeyGen, E, D) is perfectly secret if for all pair of messages $m_0, m_1 \in \mathcal{M}$ and for all ciphertexts c it holds that: $Pr[E(k, m_0) \rightarrow c \mid k \leftarrow KeyGen(1^n)]$

This security notions essentially states that: An attacker who does not know k learns nothing new about the plaintext m from seeing c.

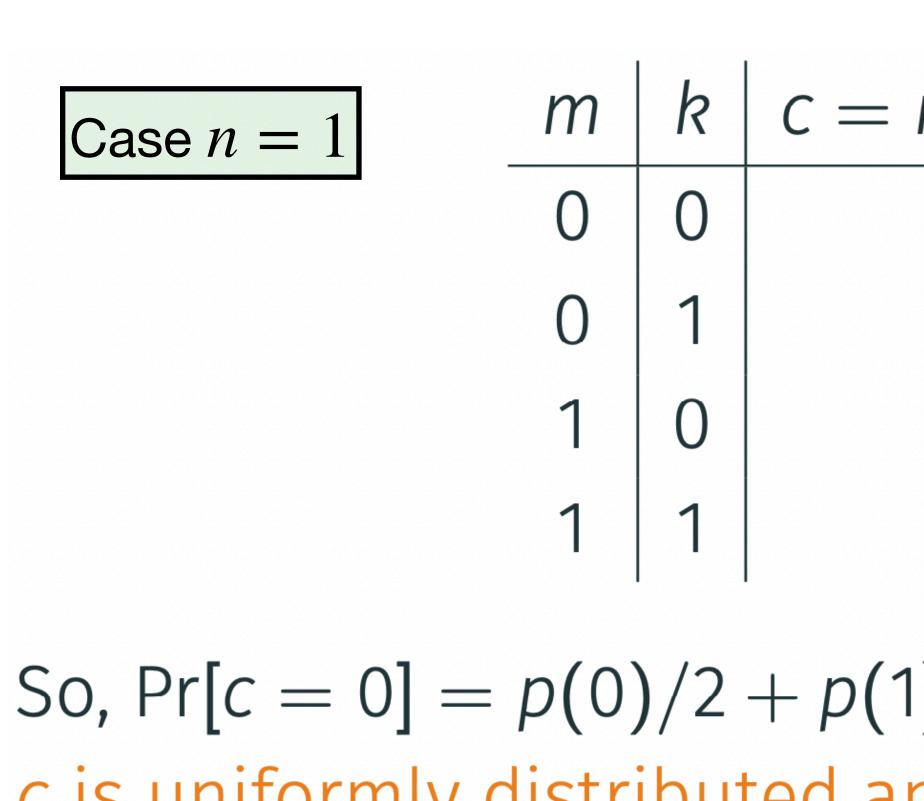
$$|= Pr[E(k, m_1) \rightarrow c | k \leftarrow KeyGen(1^n)]$$

This is an example of unconditional security

The OTP Is Perfectly Secret

Proof: In the OTP, for every m and c there is exactly one key $k = m \oplus c$ such that c = E(k, m). Thus $\Pr[c = E(k, m)] = 1/|\mathcal{K}|$.

Hence: $Pr[E(k, m_0) \rightarrow c \mid k \leftarrow KeyGen(1^n)] = \frac{1}{\mid \mathscr{K} \mid} = Pr[E(k, m_1) \rightarrow c \mid k \leftarrow KeyGen(1^n)]$



	Pr[(<i>m</i> , <i>k</i>)]
0	p(0) · 1/2
1	p(0) · 1/2
1	p(1) · 1/2
0	$p(0) \cdot 1/2$ $p(0) \cdot 1/2$ $p(1) \cdot 1/2$ $p(1) \cdot 1/2$

So, Pr[c = 0] = p(0)/2 + p(1)/2 = (p(0) + p(1))/2 = 1/2.c is uniformly distributed and independent of m!

One Time Pad: Problems

- 1- The key is as long as the message
- 2- The key should only be used to encrypt ONE message adversary gets hold of the two ciphertexts. He can then compute

$$c_0\oplus c_1=(k\oplus m_0)$$

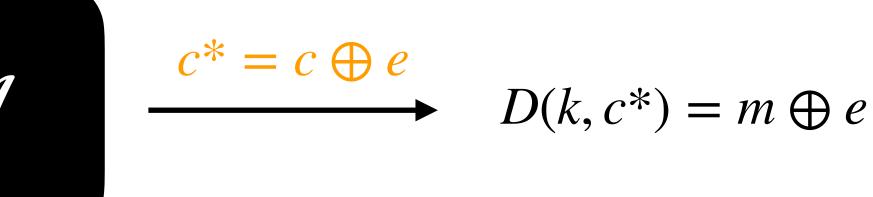
- **3- The ciphertext is (intentionally!) malleable**

$$E(k,m) \to c \longrightarrow$$

Assume that the same key is used twice, i.e. $c_0 = k \oplus m_0$ and $c_1 = k \oplus m_1$ and an

 $) \oplus (k \oplus m_1) = m_0 \oplus m_1.$

 $m_0 \oplus m_1$ conveys a lot of information about m_0 and m_1 , so this is unacceptable.



Shannon's Theorem

Theorem (Shannon 1940s) A symmetric encryption scheme (*KeyGen*, *E*, *D*) define over ($\mathscr{K}, \mathscr{M}, \mathscr{C}$)has perfect security if and only if $|\mathscr{K}| \ge |\mathscr{M}|$.

Proof: Fix an arbitrary $m_0 \in M$ and $k_0 \in K$, and let $c_0 = E(k_0, m_0)$. Since the cipher has perfect secrecy, for any $m \in M$ we have when $k \leftarrow \$ \mathscr{K}$ that $Pr[c_0 = E(k, m)] = Pr[c_0 = E(k, m_0)] > 0$. Thus for each $m \in \mathscr{M}$ there is a key $k \in \mathscr{K}$ such that $E(k, m) = c_0$. But these keys must all be different; if there was a key *k* and plaintexts m_1 and m_2 such that $E(k, m_1) = E(k, m_2) = c_0$, then we lose correctness (the decryption of c_0 for that key becomes ambiguous). Thus $|\mathscr{K}| \ge |\mathscr{M}|$.

Take away: perfect security is impractical

How close to perfect security can we go, while being practical?

A Little Secret: the Core of Crypto Is Randomness

The perfect secrecy of OTP comes from using one random key to mask/hide one message We cannot reuse the key (otherwise we lose security) but can we 'expand' it?

This is the goal of Pseudo Random Generators (PRG)

27

Lecture Agenda

Recap From Last Lecture

Blockchain Technology

- Digital Bulletin Boards
- Cryptographic Puzzles & Proof of Work

Perfect Secrecy

- Symmetric Encryption
- The One Time Pad (OTP) [Proof]
- Perfect Secrecy
- Shannon's Theorem [Proof]

Pseudorandom Generators (PRG)

- Definition
- Security
- Secure Encryption From PRG
- Semantic Security [Proof]

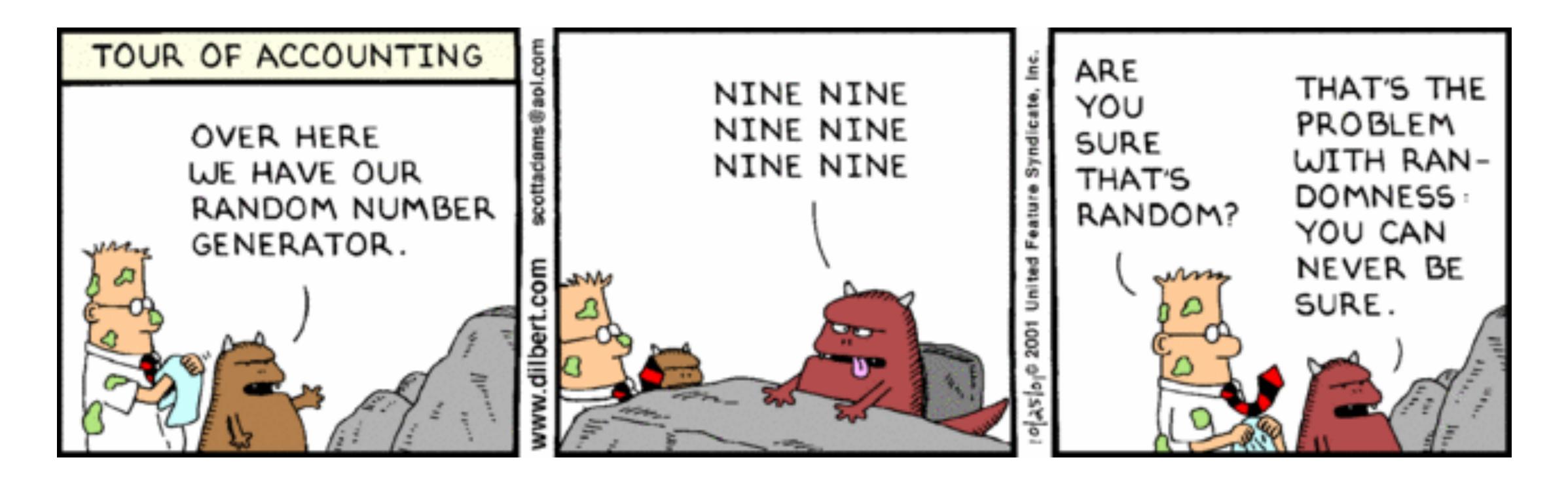
Pseudo Random Generators (PRG)

Definition: PRG

A Pseudo Random Generator is a *deterministic*, efficiently computable function PRG : $\{0,1\}^S \rightarrow \{0,1\}^L$ that on input a seed *s* of *S* bits, outputs a sequence of L > S. *Moreover, for* $s \leftarrow \{0,1\}^S$ *no efficient adversary can tell apart* PRG(*s*) *from a random string* $l \leftarrow \{0,1\}^L$.

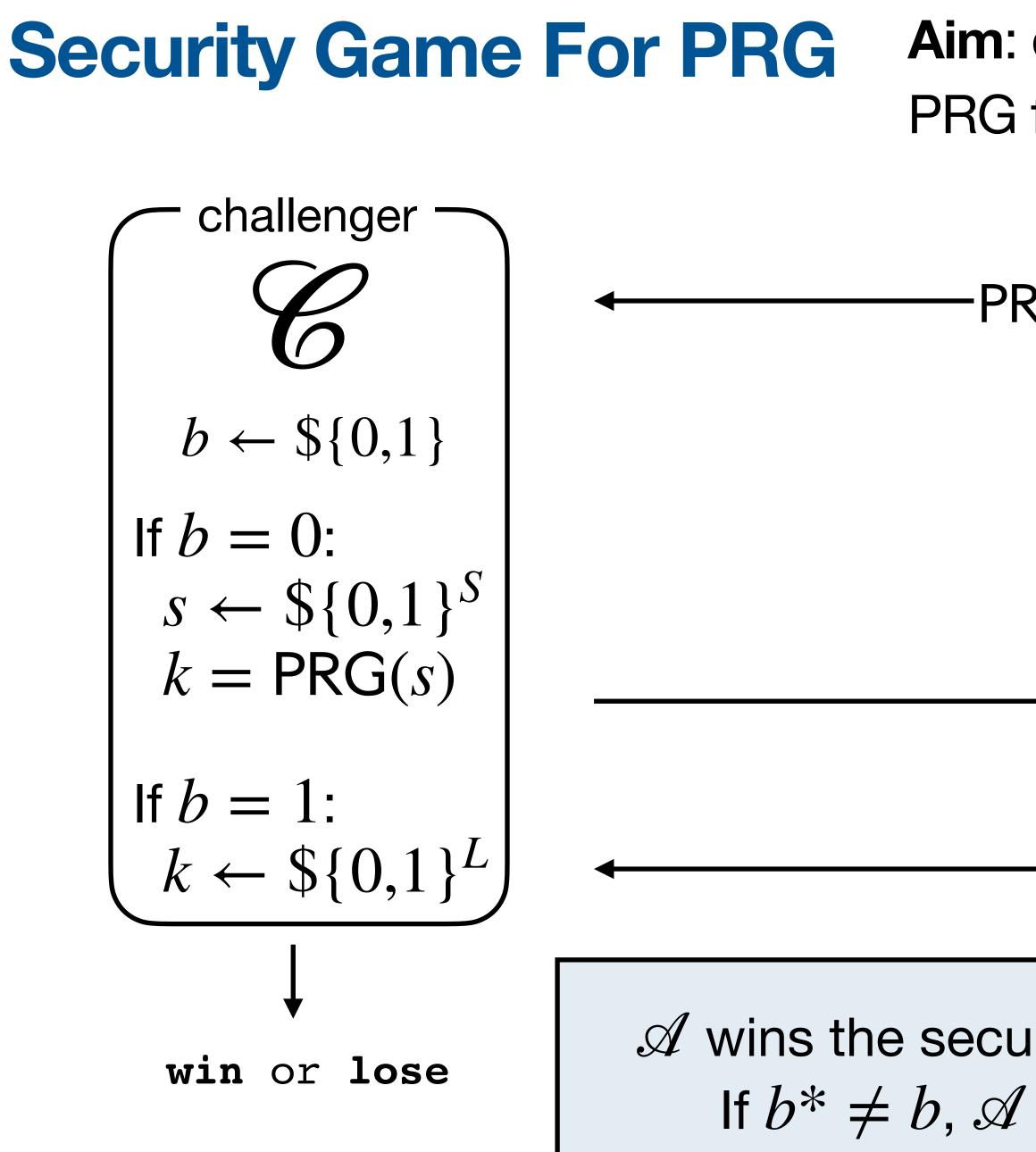
The best way to check if a candidate algorithm is a PRG is by running a series of tests, there is no mathematical proof! But we can reason about the *security* of a PRG using a formal (mathematical) security game.

Pseudo Random Generators (PRG)



The best way to check if a candidate algorithm is a PRG is by running a series of tests, there is no mathematical proof! But we can reason about the security of a PRG using a formal (mathematical) security game.

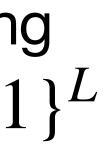
"Real OR Random" Security (Intuition)



Aim: quantify the attacker's likelihood in distinguishing PRG from a source of uniform randomness over $\{0,1\}^L$

$$PRG(\cdot)$$
 adversary
 $-k$ b^*

 \mathscr{A} wins the security game if $b^* = b$. If $b^* \neq b$, \mathscr{A} loses the game.



32

Security Game For PRG

Definition: Secure PRG

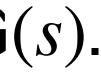
A pseudo random function PRG : $\{0,1\}^S \rightarrow \{0,1\}^L$ is a secure PRG if any PPT attacker \mathscr{A} has only negligible advantage in winning the secure PRG game. Formally, $Adv(\mathscr{A}) = |Pr[\mathscr{A} wins] - \frac{1}{2}| < negl(S)$

Verbose description of the PRG security game

- The challenger \mathscr{C} draws a uniformly random bit $b \leftarrow \{0,1\}$.
- If b = 1, the challenger draws a uniformly random string $k \leftarrow \{0,1\}^L$.
- 3. \mathscr{C} sends k to \mathscr{A} .
- 4.
- \mathscr{A} sends b^* to the \mathscr{C} . The adversary wins if $b^* = b$. 5.

2. If b = 0, the challenger draws a random seed $s \leftarrow \{0,1\}^S$ and computes k = PRG(s).

 \mathscr{A} tries to determine b from k, and eventually (within polynomial time) returns its guess b^* .

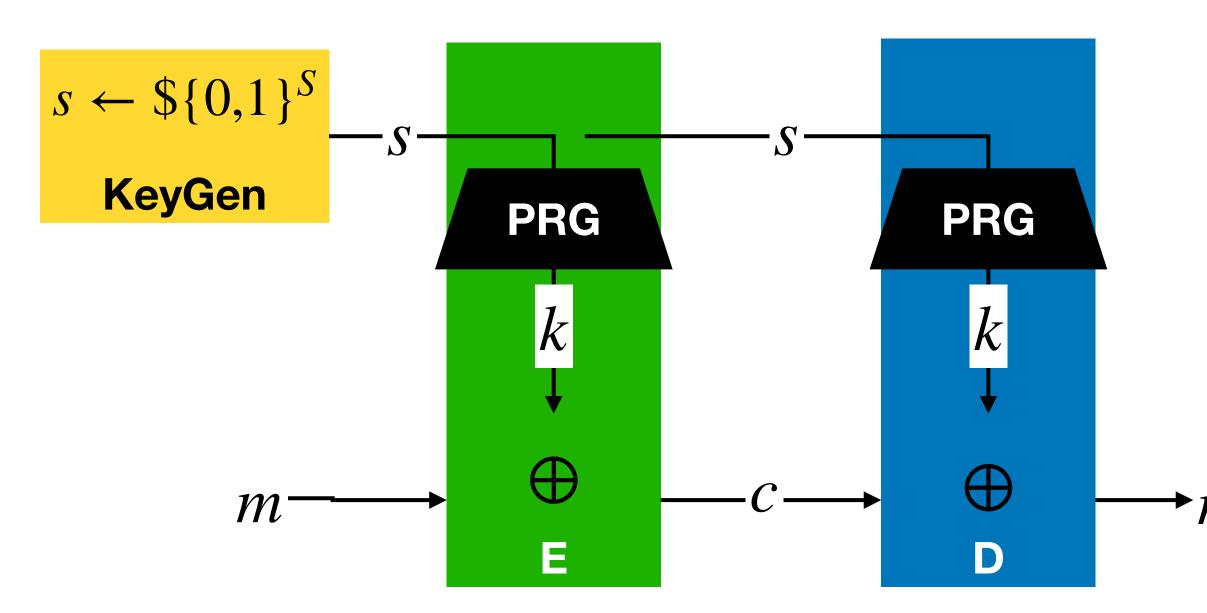


Construct a Secure Encryption Scheme From a PRG

A generic PRG
PRG :
$$\{0,1\}^S \rightarrow \{0,1\}^L$$

PRG $(s) = k$

<u>A One-time PRG cipher</u> $\mathcal{M} = C = \{0,1\}^L, \ \mathcal{K} = \{0,1\}^S, \ S < L$ $KeyGen(1^S) \rightarrow s \ (where \ s \leftarrow \$\{0,1\}^S)$ $Enc(s,m) = \mathsf{PRG}(s) \oplus m$ $Dec(s, c) = PRG(s) \oplus c$



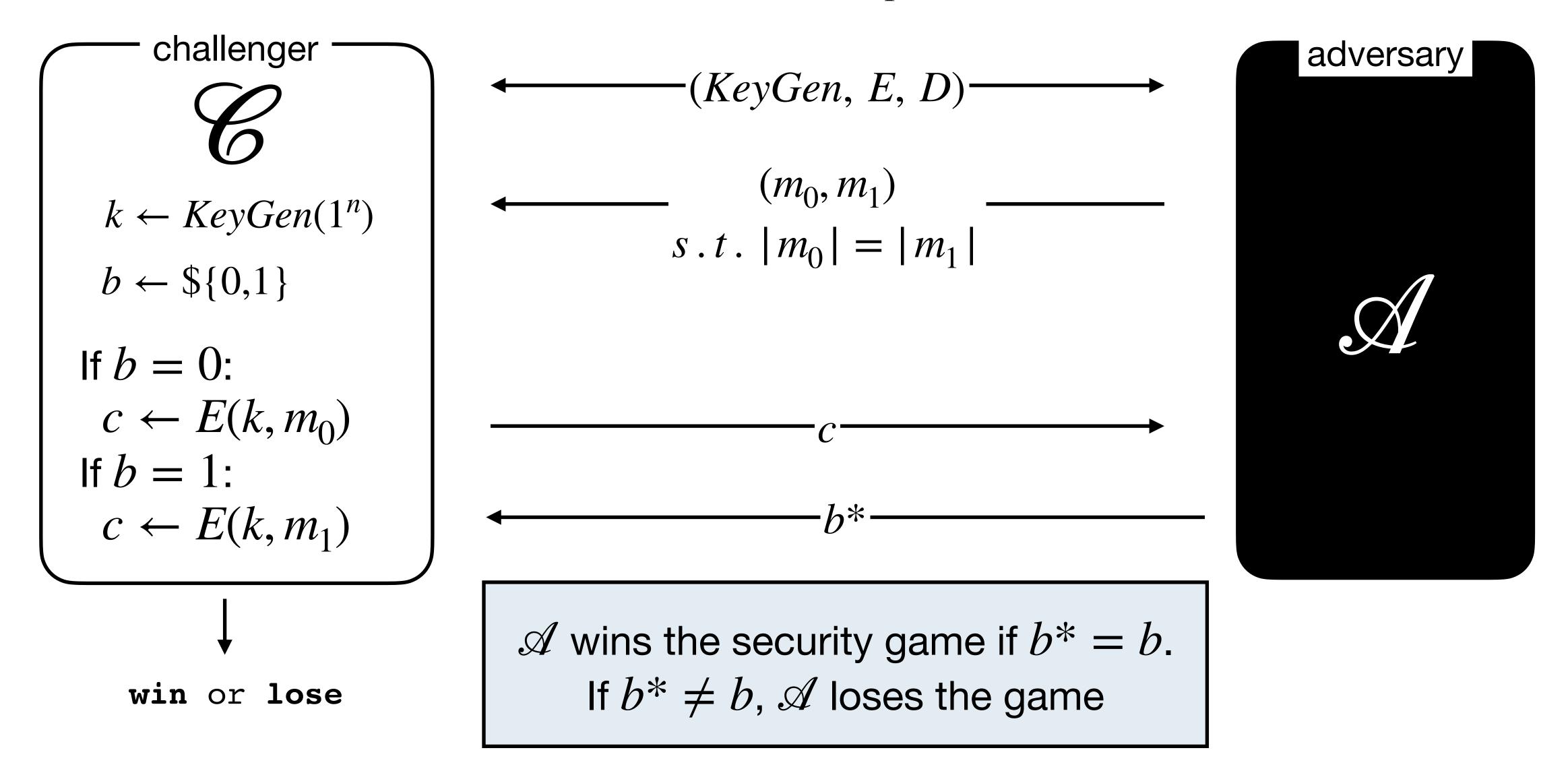
Ones this cipher have perfect security?

We need a new security definition that works when $|\mathcal{K}| < |\mathcal{M}|$

"Left OR Right" Security (Intuition)

Semantic Security

Aim: quantify the attacker's likelihood in distinguishing an encryption of a (chosen) message m_0 from an encryption of another (chosen) message m_1



Semantic Security for Symmetric Encryption

Definition: Semantic security

$$Adv(\mathscr{A}) = |Pr|$$

Verbose description of the semantic security game

- 2.
- 3.
- \mathscr{A} tries to determine b from c, m_0 , and m_1 . 4.
- 5. \mathscr{A} sends b^* to the \mathscr{C} . The adversary wins if $b^* = b$.

A symmetric encryption scheme is semantically secure if any PPT attacker \mathscr{A} has only negligible advantage in winning the semantic security game. Formally, $r[\mathscr{A} wins] - \frac{1}{2}| < negl(n)$

The challenger \mathscr{C} generates a key $k \leftarrow KeyGen(1^n)$ and draws a random bit $b \leftarrow \{0,1\}$. The adversary \mathscr{A} chooses two messages m_0, m_1 of the same length and sends them to \mathscr{C} . \mathscr{C} encrypts m_h according to the bit drawn in step 1, and returns $c = Enc(k, m_h)$ to \mathscr{A} .

Remarks on the Definition

Definition: Semantic security

A symmetric encryption scheme is semantically secure if any PPT attacker \mathscr{A} has only negligible advantage in winning the semantic security game. Formally, $Adv(\mathscr{A}) = |Pr[\mathscr{A} wins] - \frac{1}{2}| < negl(n)$

- We don't expect the encryption scheme to hide the length of the plaintext; (hence m_0 and m_1 must have the same length).
- An attacker who always answers $b^* = 1$ (or $b^* = 0$) also has advantage 0.

• An attacker who just guesses, choosing a random $b^* \leftarrow \{0,1\}$, has advantage 0.

If the encryption scheme is the one time pad, any attacker has advantage 0.

Proving our Construction Is Semantically Secure

If PRG : $\{0,1\}^S \rightarrow \{0,1\}^N$ is a secure PRG, then the cipher defined by $Enc(s, m) = PRG(s) \oplus m;$ $Dec(s, c) = PRG(s) \oplus c$ is semantically secure. Formally, for any efficient \mathscr{A} : $Adv_{sem.sec}(\mathscr{A}) = |Pr[\mathscr{A} wins] - \frac{1}{2}| < negl(S)$

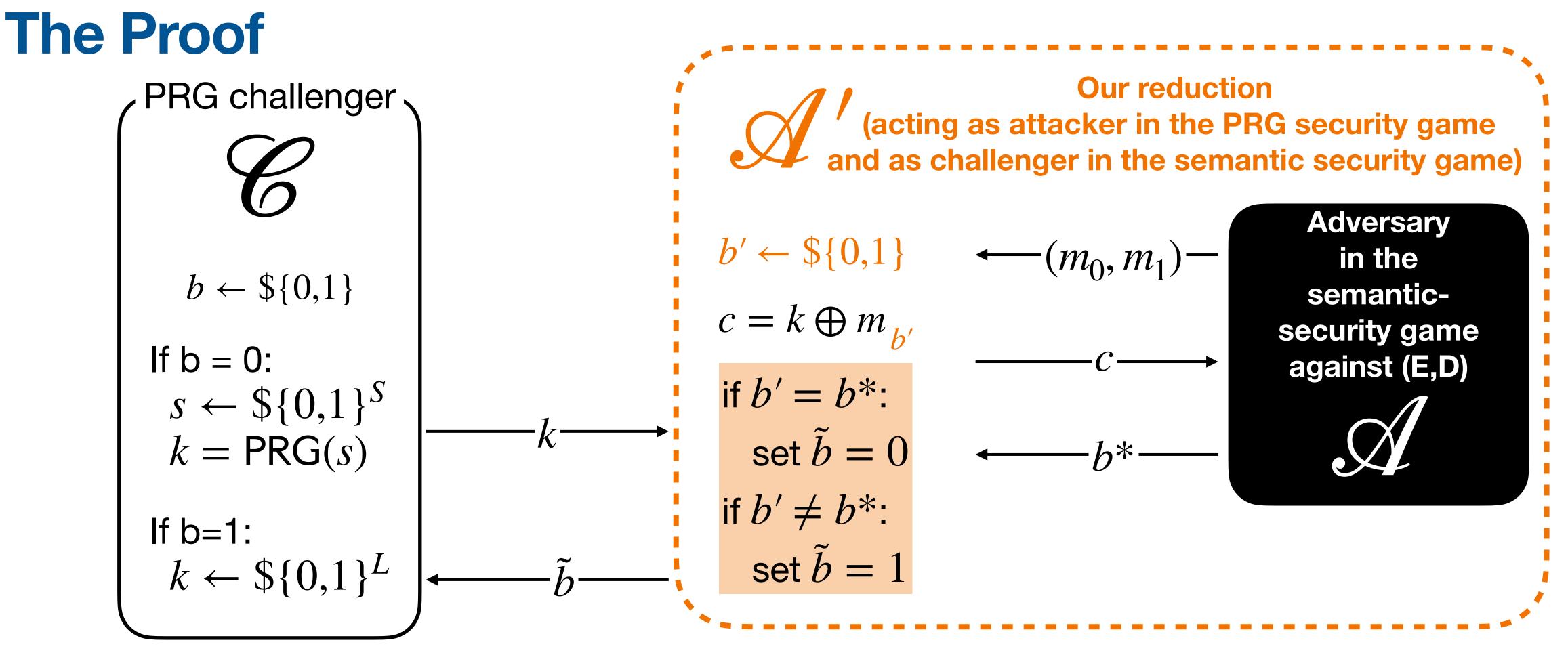
Proof Plan:

We must prove that any efficient adversary against the encryption's semantical security has negligible advantage, without knowing anything about the adversary's strategy.

Assume that there exists an adversary \mathscr{A} that can break the semantic security of the encryption. Then we build a new adversary \mathscr{A}' that uses \mathscr{A} to break the security of the PRG. Since PRG is assumed to be secure, such \mathscr{A}' cannot exist. Thus it was absurd to assume \mathscr{A} exists in the first place.

...or... proof by reduction to absurd

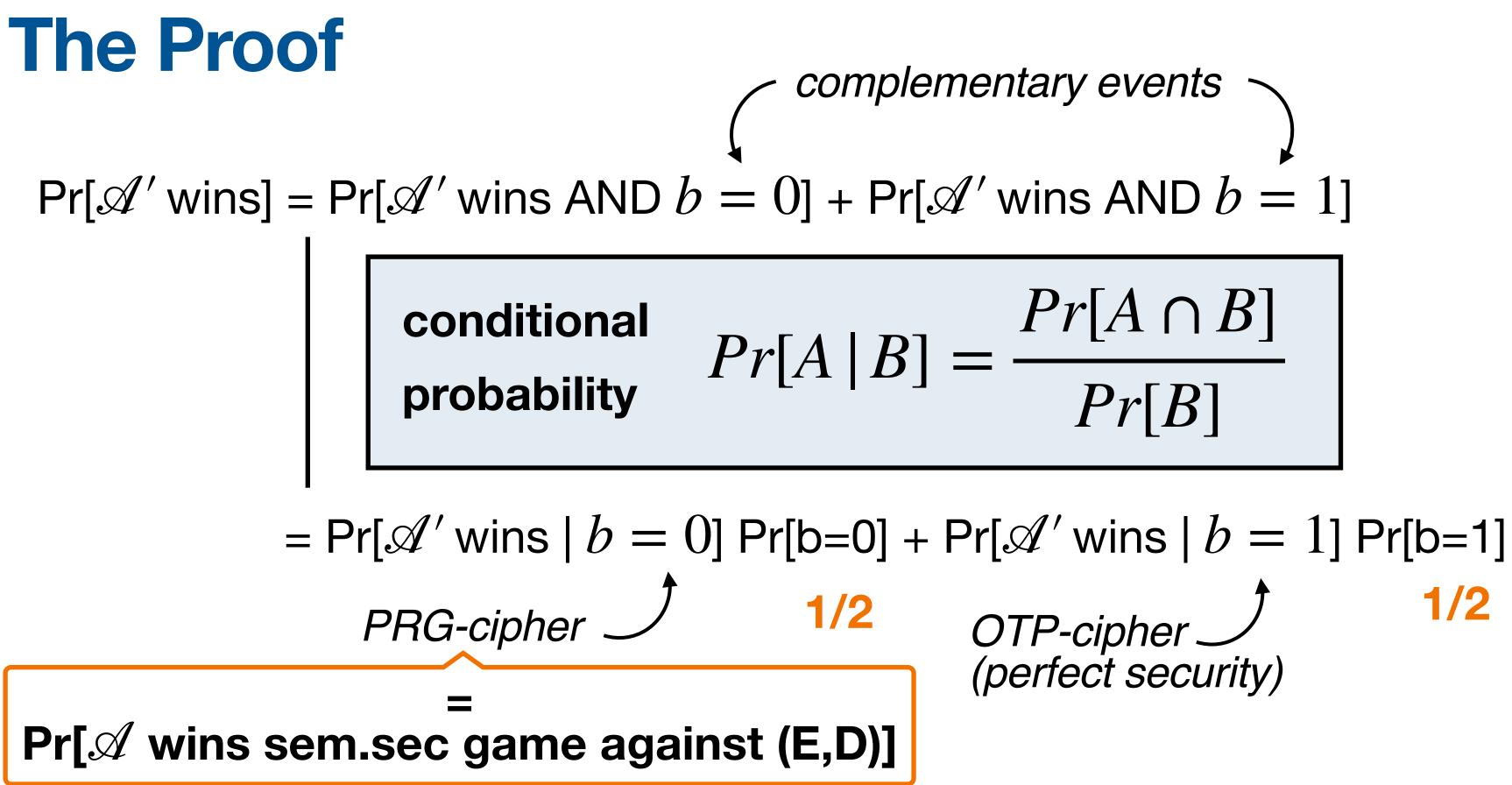
HOW ?



Important observations

guesses correctly with 1/2 probability (0 advantage).

If b = 0, the ciphertext c is the encryption using the PRG cipher. Because we assumed that \mathscr{A} wins this game with non negligible probability this means $b' = b^*$. So \mathscr{A}' wins when \mathscr{A} does. If b = 1, \mathscr{A}' encryption is the **OTP** (perfectly secure), thus \mathscr{A} has no advantage. So \mathscr{A}' only



Thus $\Pr[\mathscr{A}' \text{ wins } PRG] = \Pr[\mathscr{A} \text{ wins sem.sec}] \cdot (1/2) + 1/2 \cdot (1/2)$

1

Or, reorganising the terms: $\Pr[\mathscr{A} \text{ wins sem.sec}] = 2 \Pr[\mathscr{A}' \text{ wins PRG}] - 1/2$

$$Adv_{sem.sec}(\mathscr{A}) = |Pr[\mathscr{A} wins] - \frac{1}{2}| = |(\mathscr{A})|^2$$

wins AND
$$b = 1$$

 $Pr[A \cap B]$
 $Pr[B]$

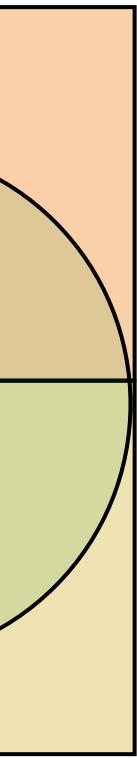
(perfect security)

$$b = 1$$

$$b = 1$$

$$b = 0$$

 $[2Pr[\mathscr{A}' \text{ wins } PRG] - 1/2) - \frac{1}{2}| = 2 \cdot Adv_{PRG}(\mathscr{A}')$



The Proof

$Adv_{sem.sec}(\mathscr{A}) = |Pr[\mathscr{A} wins] - \frac{1}{2}| = |(2F)|^{2}$ This co

reasoning implies that our PRG-based encryption is *provably* secure.

$$Pr[\mathscr{A}' \text{ wins } PRG] - 1/2) - \frac{1}{2}| = 2 \cdot Adv_{PRG}(\mathscr{A}')$$

oncludes the proof of the theorem

If our PRG-based encryption is not secure then \mathscr{A} has a non-negligible advantage in winning the semantic security game. If that was the case, we have constructed an efficient (PPT) reduction/adversary \mathscr{A}' that uses \mathscr{A} to win the PRG security game and has twice the advantage of \mathscr{A} . Since we assumed the PRG to be secure, it is impossible for any efficient adversary to break the PRG. So such an \mathscr{A}' cannot exist. Which in turn implies that \mathscr{A} cannot exist. So it was absurd to assume such an \mathscr{A} exists. This

