
CRYPTOGRAPHY
(lecture 11)

Literature:
“Lecture Notes on Introduction to Cryptography” by V. Goyal (ch 12.5,12.7.2, 12.7.3,12.4, 13.7, 13.8)
“Lecture Notes on Cryptographic Protocols” (ch 5.4.0,5.4.1, all ch 5)

“Efficient Secure Two-Party Protocols” by C. Hazay & H. Lindell (ch 3.3, 3.4)

https://www.cs.cmu.edu/~goyal/15356/lecture_notes.pdf
https://www.win.tue.nl/~berry/CryptographicProtocols/LectureNotes.pdf

Introduction to MPC
Commitment Schemes (Pedersen)
(Verifiable) Secret Sharing (Shamir)
Oblivious Transfer

Module 3: Agenda

Σ (Sigma) Protocols
• Knowledge of Pedersen Commitments

Removing Interaction
• Fiat-Shamir Heuristic

Generic 2 Party Computation
• Garbled Circuits

• Yao’s Two Party Protocol

MPC Security
Zero-Knowledge Proofs
Σ (Sigma) Protocols
• Schnorr

2

HA3

Proving Knowledge of Pedersen Commitments

3

Prover Verifier

 is a well-formed commitment

(I know s.t.)
c

m, r c = gmhr

From Lecture 9
in Module 3

r1, r2 ← $ℤq
a = gr1hr2 ∈ 𝔾

a

e ← ${0,1}t

z = (z1, z2)

0/1 ← V(a, e, z)

z1 = r1 + e ⋅ m ∈ ℤq

z2 = r2 + e ⋅ r ∈ ℤq

check that

if return 1

else return 0

z ∈ ℤq × ℤq

gz1hz2 = ce ⋅ a

A

Z

Setup(sec.par) → (, q, g, h)

Commit(m,r) = gm hr mod q =: c

Open(m,r,c) = 1 if c = gm hr mod q,

 and 0 otherwise

𝔾

Introduction to MPC
Commitment Schemes (Pedersen)
(Verifiable) Secret Sharing (Shamir)
Oblivious Transfer

Module 3: Agenda

Σ (Sigma) Protocols
• Knowledge of Pedersen Commitments

Removing Interaction
• Fiat-Shamir Heuristic

Generic 2 Party Computation
• Garbled Circuits

• Yao’s Two Party Protocol

MPC Security
Zero-Knowledge Proofs
Σ (Sigma) Protocols
• Schnorr

4

HA3

Schnorr Σ-Protocol for Knowledge of dLog

5

Prover Verifier

r ← $ℤq
a = gr ∈ 𝔾

I know s.t. w x = gw

• the description of a group of prime order with generator

• the value

• , defined as

• the challenge length

𝔾 q g
x ∈ 𝔾

R(x, y) : 𝔾 × ℤq → {0,1} R(x, y) = 1 iff x = gy

t = log2(q) ∈ ℕ

public inputs (available to both P and V)

a ← A(w, r)

e ← ${0,1}t

z ← Z(w, r, e)

0/1 ← V(a, e, z)

 z = r + e ⋅ w ∈ ℤq

z′￼ = a ⋅ xe ∈ 𝔾
if return 1

else return 0

gz = z′￼

Completeness

Special Soundness

Special HV ZK

xijufcpbse
qsppgt

From Lecture 10
in Module 3

Schnorr Σ-Protocol for Knowledge of dLog NON-Interactive?

6

🧐 how to generate a fresh/
good challenge ?e

Fiat-Shamir Heuristic model the hash function as a random oracle and compute the challenge as
e = H(g, x, a)

Verifier

Verifier

Verifier

a ← A(w, r)

e ← ${0,1}t

z ← Z(w, r, e)

0/1 ← V(a, e, z)

if return 1

else return 0

gz = z′￼

z′￼ = a ⋅ xe ∈ 𝔾

Prover

r ← $ℤq
a = gr ∈ 𝔾

I know s.t. w x = gw

 z = r + e ⋅ w ∈ ℤq

Schnorr Σ-Protocol for Knowledge of dLog NON-Interactive?

7

Recipe to create a digital signature from a ZK Proof
1. pick randomness

2. generate new (unpredictable) randomness using the hash function

3. use the secret and hide it with both of the randomnesses

4. return a proof of knowledge of the secret value

e = H(g, x, a)

🧐 where is the message?

m

Fiat-Shamir Heuristic model the hash function as a random oracle and compute the challenge as
e = H(g, x, a)

Prover

r ← $ℤq
a = gr ∈ 𝔾

I know s.t. w x = gw

 z = r + e ⋅ w ∈ ℤq

This is the same procedure as ECDSA is built

Introduction to MPC
Commitment Schemes (Pedersen)
(Verifiable) Secret Sharing (Shamir)
Oblivious Transfer

Module 3: Agenda

Σ (Sigma) Protocols
• Knowledge of Pedersen Commitments

Removing Interaction
• Fiat-Shamir Heuristic

Generic 2 Party Computation
• Garbled Circuits

• Yao’s Two Party Protocol

MPC Security
Zero-Knowledge Proofs
Σ (Sigma) Protocols
• Schnorr

8

Generic Two Party Computation (2PC)

9

2PC

B(𝖢, A)

𝖢(A, B)

circuit of gates
(computation)

 Alice’s input to
the computation Bob’s input

IND-CPA Encryption

Oblivious Transfer

ℱ({𝖢, A}, B) ↦ (𝖢(A, B), Ø)

Building Garbled Circuits

10

any boolean function can be represented as a boolean circuit composed only of AND gates and XOR gates𝖢

g : {0,1} × {0,1} → {0,1}
gate g

Left Right

Output

(wL, wR) ↦ wO = g(wL, wR)

confused and distorted, unclear

𝙲 ← Garble(𝖢, A)
𝙲

𝚌 ← Eval(𝙲, B)𝚌
outA ← UnGarble(𝚌)

🧐 how to model a ‘gate’
mathematically?

BA

ℱ𝖢(A, B) ↦ (𝖢(A, B), Ø)

11if Bob gets to select items provided by Alice, his choice unavoidably leaks his input value

Garbling a Gate

L R O
k0

L

k0
L

k1
L

k1
L

k0
R

k0
R

k1
R

k1
R

k0
O

k0
O

k0
O

k1
O

pick 6 random strings:

Kb

L, Kb
R, Kb

O ← ${0,1}λ, for b ∈ {0,1}

garble the truth table of g

1

2
kg(wL,wR)

O

Attempt 1

3
send to Bob the
garbled truth
table

4select the 2 rows with

and send them to Alice

kB
R

A Bcompute for Aliceg(A, B)

5 select the row with and
decode from

kA
L

C = g(A, B) kC
O

(k0
L, kB

R , kg(0,B)
O), (k1

L, kB
R , kg(1,B)

O)

🧐 what’s the issue?

security parameter

truth table for AND gate

Garbling a Gate

12

L R O
k0

L

k0
L

k1
L

k1
L

k0
R

k0
R

k1
R

k1
R

k0
O

k0
O

k0
O

k1
O

garble the truth table of g

1

2
kg(wL,wR)

O

Attempt 2

3
send to Bob the
sub-table for
g(A, ⋅)

this would be Garble(g, A)

4
select the row with

and send to Alice the

corresponding

kB
R

kC
O

A B

4 decode from C = g(A, B) kC
O

(kg(0,B)
O , kg(1,B)

O)

🧐 what’s the issue?

if Alice selects items for Bob, her choice may leak her input value or Bob’s

pick 6 random strings:

Kb

L, Kb
R, Kb

O ← ${0,1}λ, for b ∈ {0,1}

compute for Aliceg(A, B)

Garbling a Gate

13

garble the outputs of asg

1

2

A BIND-CPA encryption scheme

 symmetric(KeyGen, Enc, Dec)

c0,0 = Enck0
L(Enck0

R
(k0

O))
c0,1 = Enck0

L(Enck1
R
(k0

O))
c1,0 = Enck1

L(Enck0
R
(k0

O))
c1,1 = Enck1

L(Enck1
R
(k1

O))

Attempt 3

3 send all cipher
texts to Bob 4select and return to

Alice (c0,B, c1,B)

5 decrypt
 C = g(A, B) = DeckA

L(DeckB
R
(cA,B))

🧐 what’s the issue?

in this setting, Encryption alone does not provide privacy (Bob’s selection may leak info)

ℱOT({x0, x1}, b) ↦ (Ø, xb)

pick 6 random strings:

Kb

L, Kb
R, Kb

O ← ${0,1}λ, for b ∈ {0,1}

compute for Aliceg(A, B)

Garbling a Circuit

14

A B

Final Attempt

wL wR

w

gate gi

cg
α,β = Enckα

L(Enckβ
R
[kg(α,β)

O | |0])

k0
R k1

Rk0
L k1

L

k0
O k1

O

1

Pick keys for each gate in C

2
Compute the garbled output of each gate

send

𝙲 = ({cgi
α,β}i=1,…,#gates

α,β∈{0,1} , {kA
Alice′￼s wire})

4 cipher texts for each gate in C
1 key for each input wire of Alice

run an Oblivious
Transfer protocolsender receiver{k0

Bob, k1
Bob}

1 pair of keys for each input wire of Bob

B
kB

Bob

1- Garbling Phase

3

Image from:

Wang et al. “Reusable garbled gates for new fully
homomorphic encryption service” International journal
of web and grid services (2017)

3

Garbling a Circuit

15

A B

wL wR

w

gate gi

cg
α,β = Enckα

L(Enckβ
R
[kg(α,β)

O | |0])

k0
R k1

Rk0
L k1

L

k0
O k1

O

1

Pick keys for each gate in C

2
Compute the garbled output of each gate

1- Garbling Phase

send

𝙲 = ({cgi
α,β}=1,…,#gates

α,β∈{0,1} , {kA
Alice})

2 - Evaluation Phase

kB
Bob

this value is simply a correctness
check that helps Bob understand
which key to use to proceed with
the garbled evaluation.

0

k□
O

Final Attempt

Garbling a Circuit

16

A B

1

2send the garbled value of
the output wire to Alice

send

𝙲 = ({cgi
α,β}=1,…,#gates

α,β∈{0,1} , {kA
Alice})

sequentially evaluate all gates in C

1- Garbling Phase

2 - Evaluation Phase

kB
Bob

send

𝚌 = kC(A,B)

O

this means Bob progressively decrypts
each 4-tuple of ciphertexts using the keys
he has at hand and proceeds using the key
that decrypts to (i.e., a bit strings that
ends with a fixed number of 0s)

k□
O | |0

Final Attempt

Garbling a Circuit

17

A B

1

2 find and learn the bit kC(A,B)
O C(A, B)

lookup the garbled truth table for g#gates

1- Garbling Phase
2 - Evaluation Phase

kB
Bob

3 - Output Phase

L R O
k0

L

k0
L

k1
L

k1
L

k0
R

k0
R

k1
R

k1
R

k0
O

k0
O

k0
O

k1
O

kC(A,B)
O

This is Yao’s protocol for generic
secure two party computation !

Final Attempt

send

𝙲 = ({cgi
α,β}=1,…,#gates

α,β∈{0,1} , {kA
Alice})send

𝚌 = kC(A,B)
O

Recipe To Compute any (Boolean) Function With 2PC

18

1. Alice picks a secret key for every possible input/output of the gate

2. Alice send her input keys, and the truth-table cipher texts for each gate to Bob

3. Bob evaluates the garbled gate on its input and sends the outcome back to Alice
(this is a secret key)

4. Alice decodes the value using and the garbled truth table of the
final gate of the circuit

k□
△

k∙

∙ = C(A, B) k∙

This is Yao’s protocol for generic
secure two party computation !

