CRYPTOGRAPHY

(lecture 11)

Literature:
“Lecture Notes on Introduction to Cr hy” by V. Goyal (ch 12.5,12.7.2, 12.7.3,12.4, 13.7, 13.8)

“LLecture Notes on Cryptographic Protocols” (ch 5.4.0,5.4.1, all ch 5)
“Efficient Secure Two-Party Protocols” by C. Hazay & H. Lindell (ch 3.3, 3.4)

https://www.cs.cmu.edu/~goyal/15356/lecture_notes.pdf
https://www.win.tue.nl/~berry/CryptographicProtocols/LectureNotes.pdf

Module 3: Agenda

Introduction to MPC

Commitment Schemes (Pedersen)
(Verifiable) Secret Sharing (Shamir)
Oblivious Transfer

2 (Sigma) Protocols
MPC Security * Knowledge of Pedersen Commitments ||HAS3

Zero-Knowledge Proofs

2 (Sigma) Protocols Removing Interaction
e Schnorr o Fiat-Shamir Heuristic
Generic 2 Party Computation

» (Garbled Circuits
* Yao’s Two Party Protocol

Proving Knowledge of Pedersen Commitments

From Lecture 9
In Module 3

Setup(sec.par) — (G, g, g, h)
Commit(m,r) =gmhr modg=:c

Open(m,r,c) =1 if c = g™ h" mod q,
and O otherwise

g

)

c Is a well-formed commitment
s.t.c=g"h")

(I kKnow

Verifier
a
- 0/1 « V(a,e,z
A a=g'h” e t ()
e < ${0,1} check that 7z € Zq X Zq
' <1 h< g— € .
2= (2 2) if g9h2=c-a return 1

else return O

Module 3: Agenda

Introduction to MPC

Commitment Schemes (Pedersen)
(Verifiable) Secret Sharing (Shamir)
Oblivious Transfer

2 (Sigma) Protocols
MPC Security * Knowledge of Pedersen Commitments

Zero-Knowledge Proofs

2 (Sigma) Protocols Removing Interaction
o Schnorr * Fiat-Shamir Heuristic

Generic 2 Party Computation
e Garbled Circuits
* Yao’s Two Party Protocol

Schnorr 2-Protocol for Knowledge of dLog

From Lecture 10

Prover Verifier

r—$Z, _a<Aw,n) 0/1 « V(a, e.72)
a=g €G
e — ${0,1}¢

7=a-x*€e G

if g = z'return 1
else return O

i=rt+e-w ez | EFZZwre
q _—

public inputs (available to both P and V)

Completeness
® the description of a group G of prime order g with generator g

® the value x € G Special Soundness
® R(x,y): Gx Z,— {0,1}, defined as R(x,y) =1 iff x = g’

® the challenge length r = log,(9) € N

whiteboard

PPOO'FS

Special HV ZK

Schnorr Z-Protocol for Knowledge of dLog NON-Interactive?

O.‘ ——I know w s.t.x = g" @
A ()

Prover Verifier

r<$Z, _a<Aw,n) 0/1 < V(a, e.72)
a=g" €G o
e —\MP,1}'

Z=a-xe GG

if <= 7z return 1 Verifier

B 72— L(w,r,e
z=r+e-w €Z, # else return O a

@ how to generate a fresh/ h
good challenge e? Verifier

Fiat-Shamir Heuristic model the hash function as a random oracle and compute the challenge as
e =H(g,x,a)

Schnorr Z-Protocol for Knowledge of dLog NON-Interactive?

b | kKnow w s.t. x =g"

Prover

Recipe to create a digital signature from a ZK Proof
1. pick randomness

. generate new (unpredictable) randomness using the hash function
e = H(g, x,a) m . use the secret and hide it with both of the randomnesses

_ , . return a proof of knowledge of the secret value
9

_ This is the same procedure as ECDSA is built

& where is the message?

Fiat-Shamir Heuristic model the hash function as a random oracle and compute the challenge as
e =H(g,x,a)

Module 3: Agenda

Introduction to MPC

Commitment Schemes (Pedersen)
(Verifiable) Secret Sharing (Shamir)
Oblivious Transfer

2 (Sigma) Protocols

MPC Security * Knowledge of Pedersen Commitments
Zero-Knowledge Proofs
2 (Sigma) Protocols Removing Interaction

* Schnorr * Fiat-Shamir Heuristic

Generic 2 Party Computation

» (Garbled Circuits
e Yao’s Two Party Protocol

Generic Two Party Computation (2PC)

D)

circuit of gates || Alice’s input to

(computation) ||the computation Bob's inpcgj
VY
(C,A) B

N s

2PC

C(A, B)

—

F{C,A},B) — (C(A,B), D)

g

()

Building Garbled Circuits

confused and distorted, unclear

any boolean function can be represented as a boolean circuit C composed only of AND gates and XOR gates

Output
g 10,1} x{0,1} — {0,1}
(W, Wg) = wo = g(Wp, wg) gate g
Left Right
gC(Aa B) = (C(Aa B)a @)

4-, A

A
C

C « Garble(C,A) N
C

out, <— UnGarble(c) D EEE—

& how to model a ‘gate’
mathematically?

-

)

c « Eval(C, B)

10

Garbling a Gate

4'..', @ compute g(A, B) for Alice @
A

pick 6 random strings: f security parameter

K}, Ky, K, — ${0,1}%, for b € {0,1}

1

garble the truth table of g Attempt 1
L R O

SZ?SI etg 58$hthe select the 2 rows with kg 4
0 3 table and send them to Alice

(K KRS, (kf kE 1)

D

5 select the row with k! and
decode C = g(A, B) from kg @ what’s the issue?

k« truth table for AND gate

Garbling a Gate

4'..', @ compute g(A, B) for Alice
A

pick 6 random strings:
K}, Ky, K, — ${0,1}%, for b € {0,1}

1

garble the truth table of g Attempt 2
L R O

10 [0 10 send to Bob the select the row with k}?

LR 70 WyW b-table for i 4
SO e SU and send to Alice the

kO | kb kS g(A, -)\

corresponding kg

k' | ky k7 g(0.B) 7.8(1,B)
ol B this would be Garble(g, A) (kO ’kO)
ki (kKo

decode C = g(A, B) from kOC

@ what’s the issue?

Garbling a Gate

@ compute g(A, B) for Alice @
= @ IND-CPA encryption scheme

[vy (KeyGen, Enc, Dec) symmetric ()
pick 6 random strings:

K}, Ky, K, — ${0,1}%, for b € {0,1}

1

garble the outputs of g as Attempt 3
oo = Encyo(Encyo(k?

o0 g (k’g(0)) gy send all cipher select and return to 4
Co| = Enckg Encké(kg) texts to Bob Alice (¢y p» €1)

decrypt
C = g(A, B) = Decy, (Deckg(cA’B))

For({xg, x1},b) = (D, x,) | @ what's the issue?

~in this setting, Encryption alone does not provide privacy (Bob’s selection may leak info)

5

Garbling a Circuit

Final Attempt

1- Garbling Phase
® 0 @ E o (E (k7)) E, (E, (k;))
B,y (B, (2) E,.(E, (k})) m
“ By Ep (kD) B, (E, ()
. o E-1 EJ ko 1 i1 :
Pick keys for each gate in C 2) gt
0 71
w ko k
| oL E,o s (k%)) E,o € (K9)
/\ Ekg'(Ek.; (kf)) E;{g (E;\?(kg))
. Ekl (E,c (kf)) Ek! (Ek? (keo)) mage from:
gate gl : : : l {/Var?g ét aI.‘_‘ReusabIe_ garble(_j gates for new fuI_Iy
L‘—rl Eq By (k) BaBg (k) | Coeh and arid samvices (o7 o1 e fouma
0 71 0 71
kp kg wp wg kg kg send
—>
C te the garbled output of each gat .. gates
ompue e garbled output of each gate { } { |
5 (@.p) aﬁe{O 1} Alice's wire
04
= Enc, (Ean,B[kg | \O]) | |
ﬁ 4 cipher texts for each gate in C

1 pair of keys for each input wire of Bob 1 key for each input wire of Alice

3 Vi — B .
sender {ko , I 1 ! run an Oblivious receiver
Bob> ""Bob Transfer protocol — > kBOb

14

Garbling a Circuit Final Attempt

Q 1- Garbling Phase @

' ' B _ LJHgates
Pick keys for gacih gate in C ky C= [b s aﬁE{O i | Allce})
w Ky kg
|
7\ 2 - Evaluation Phase
gate g
ki ko w, wy kg ky this 0 value is simply a correctness
check that helps Bob understand
Compute the garbled output of each gate which key k5 to use to proceed with
2 ﬁ = Enc, (Eanﬂ[kg(a an O]) the garbled evaluation.

15

Garbling a Circuit

S

E (. (k7))

Final Attempt

1- Garbling Phase

= Foat
{C o, aﬁe{oéljc}les { Allce})

2 - Evaluation Phase

E,(E, (£))

Ek‘@ (Ekf (kgo))

E, (E.(kp)

E o (B, (L)

E,, (E, (£2)

E,q(E, ()

E, (B, (k1)

E,q (B, (k)

E,q (B (k)

E,, (E, (k)

E,. (E,.(k))

E, (B, (k)

E,; (E,o (k%))

E, (B (K))

sequentially evaluate all gates in C

this means Bob progressively decrypts
each 4-tuple of ciphertexts using the keys
he has at hand and proceeds using the key
that decrypts to k5[0 (i.e., a bit strings that

ends with a fixed number of 0s)

send send the garbled value of B
W the output wire to Alice

16

Garbling a Circuit Final Attempt

1- Garbling Phase
@ @ 2 - Evaluation Phase @
A

send B
kBOb C =

— kC(A,B)

#gates | LA
(¢,'s oz/fe{ogic}Z B {kAlice})

3 - Output Phase

lookup the garbled truth table for gy,
L R O

ki ke ko
ki kg ko

ki ky ko find kg(A’B) and learn the bit C(A, B)
| 1 1
kL K ko This is Yao’s protocol for generic
secure two party computation!

17

Recipe To Compute any (Boolean) Function With 2PC

This is Yao’s protocol for generic
secure two party computation !
1. Alice picks a secret key k A for every possible input/output of the gate

2. Alice send her input keys, and the truth-table cipher texts for each gate to Bob

3. Bob evaluates the garbled gate on its input and sends the outcome back to Alice
(this is a secret key k°)

4. Alice decodes the value ¢ = C(A, B) using k* and the garbled truth table of the
final gate of the circuit

18

