CRYPTOGRAPHY

(lecture 11)

Literature:

"Lecture Notes on Introduction to Cryptography" by V. Goyal (ch 12.5,12.7.2, 12.7.3.12.4, 13.7, 13.8) "Lecture Notes on Cryptographic Protocols" (ch 5.4.0,5.4.1, all ch 5)
"Efficient Secure Two-Party Protocols" by C. Hazay \& H. Lindell (ch 3.3, 3.4)

Module 3: Agenda

Introduction to MPC
Commitment Schemes (Pedersen) (Verifiable) Secret Sharing (Shamir) Oblivious Transfer

MPC Security

Zero-Knowledge Proofs $\boldsymbol{\Sigma}$ (Sigma) Protocols

- Schnorr

Σ (Sigma) Protocols

- Knowledge of Pedersen Commitments HA3

Removing Interaction

- Fiat-Shamir Heuristic

Generic 2 Party Computation

- Garbled Circuits
- Yao’s Two Party Protocol

Proving Knowledge of Pedersen Commitments

Setup(sec.par) $\rightarrow(\mathbb{G}, \mathrm{q}, \mathrm{g}, \mathrm{h})$
From Lecture 9 in Module 3
Commit(m,r) $=g^{m} h^{r} \bmod q=: c$
Open $(m, r, c)=1$ if $c=g^{m} h^{r} \bmod q$, and 0 otherwise

Verifier

$$
\begin{array}{cc}
A \begin{array}{l}
\begin{array}{l}
r_{1}, r_{2} \leftarrow \$ \mathbb{Z}_{q} \\
a=g^{r_{1} h^{r_{2}} \in \mathbb{G}}
\end{array} \\
Z
\end{array} & \begin{array}{c}
a \\
\hline
\end{array} \\
\begin{array}{l}
z_{1}=r_{1}+e \cdot m \in \$\{0,1\}^{t} \\
z_{2}=r_{2}+e \cdot r \in \mathbb{Z}_{q}
\end{array} & \begin{array}{l}
0 / 1 \leftarrow V(a, e, z) \\
\text { check that } z \in \mathbb{Z}_{q} \times \mathbb{Z}_{q} \\
\text { if } g^{z_{1}} h^{z_{2}}=c^{e} \cdot a \text { return } 1 \\
\text { else return } 0
\end{array} \\
\hline
\end{array}
$$

Module 3: Agenda

Introduction to MPC
Commitment Schemes (Pedersen) (Verifiable) Secret Sharing (Shamir) Oblivious Transfer

MPC Security

Zero-Knowledge Proofs $\boldsymbol{\Sigma}$ (Sigma) Protocols

- Schnorr
Σ (Sigma) Protocols
- Knowledge of Pedersen Commitments

Removing Interaction

- Fiat-Shamir Heuristic HA3

Generic 2 Party Computation

- Garbled Circuits
- Yao’s Two Party Protocol

Schnorr Σ-Protocol for Knowledge of dLog

Verifier

$$
0 / 1 \leftarrow V(a, e, z)
$$

$$
z^{\prime}=a \cdot x^{e} \in \mathbb{G}
$$

$$
\text { if } g^{z}=z^{\prime} \text { return } 1
$$

$$
\text { else return } 0
$$

public inputs (available to both P and V)

- the description of a group \mathbb{G} of prime order q with generator g
- the value $x \in \mathbb{G}$

Schnorr Σ-Protocol for Knowledge of dLog NON-Interactive?

Fiat-Shamir Heuristic model the hash function as a random oracle and compute the challenge as

$$
e=H(g, x, a)
$$

Schnorr Σ-Protocol for Knowledge of dLog NON-Interactive?

$$
z=r+e \cdot w \in \mathbb{Z}_{q}
$$

(9) where is the message?

Recipe to create a digital signature from a ZK Proof

1. pick randomness
2. generate new (unpredictable) randomness using the hash function
3. use the secret and hide it with both of the randomnesses
4. return a proof of knowledge of the secret value

Fiat-Shamir Heuristic model the hash function as a random oracle and compute the challenge as

$$
e=H(g, x, a)
$$

Module 3: Agenda

Introduction to MPC
Commitment Schemes (Pedersen) (Verifiable) Secret Sharing (Shamir)
Oblivious Transfer

MPC Security
Zero-Knowledge Proofs $\boldsymbol{\Sigma}$ (Sigma) Protocols

- Schnorr
Σ (Sigma) Protocols
- Knowledge of Pedersen Commitments

Removing Interaction

- Fiat-Shamir Heuristic

Generic 2 Party Computation

- Garbled Circuits
- Yao’s Two Party Protocol

Generic Two Party Computation (2PC)

Building Garbled Circuits

confused and distorted, unclear
any boolean function can be represented as a boolean circuit C composed only of AND gates and XOR gates

$$
\begin{aligned}
& g:\{0,1\} \times\{0,1\} \rightarrow\{0,1\} \\
& \quad\left(w_{L}, w_{R}\right) \mapsto w_{O}=g\left(w_{L}, w_{R}\right)
\end{aligned}
$$

Q how to model a 'gate' mathematically?

$$
\mathscr{F}_{C}(A, B) \mapsto(\mathrm{C}(A, B), \varnothing)
$$

$$
\mathrm{C} \leftarrow \operatorname{Garble}(\mathrm{C}, A)
$$

$c \leftarrow \operatorname{Eval}(\mathrm{C}, B)$

$$
\text { out }_{A} \leftarrow U n G a r b l e(\mathrm{c})
$$

Garbling a Gate

compute $g(A, B)$ for Alice

pick 6 random strings:
$K_{L}^{b}, K_{R}^{b}, K_{O}^{b} \leftarrow \$\{0,1\}^{\lambda}$, for $b \in\{0,1\}$
garble the truth table of g

truth table for AND gate

Attempt 1

 select the 2 rows with k_{R}^{B} and send them to Alice

$$
\stackrel{\left(k_{L}^{0}, k_{R}^{B}, k_{O}^{g(0, B)}\right),\left(k_{L}^{1}, k_{R}^{B}, k_{O}^{g(1, B)}\right)}{4}
$$

select the row with k_{L}^{A} and
decode $C=g(A, B)$ from k_{O}^{C}

Garbling a Gate

$K_{L}^{b}, K_{R}^{b}, K_{O}^{b} \leftarrow \$\{0,1\}^{\lambda}$, for $b \in\{0,1\}$
garble the truth table of g

Attempt 2

select the row with k_{R}^{B} and send to Alice the 4 corresponding k_{O}^{C}
this would be Garble $(g, A) \quad \stackrel{\left(k_{O}^{g(0, B)}, k_{O}^{g(1, B)}\right)}{\longleftrightarrow}$
4 decode $C=g(A, B)$ from k_{O}^{C}
(2) what's the issue?

Garbling a Gate

compute $g(A, B)$ for Alice
IND-CPA encryption scheme (KeyGen, Enc, Dec) symmetric

pick 6 random strings:
$K_{L}^{b}, K_{R}^{b}, K_{O}^{b} \leftarrow \$\{0,1\}^{\lambda}$, for $b \in\{0,1\}$
garble the outputs of g as

$$
2 \begin{aligned}
c_{0,0} & =\operatorname{Enc}_{k_{L}^{0}}\left(\operatorname{Enc}_{k_{R}^{0}}\left(k_{O}^{0}\right)\right) \\
c_{0,1} & =\operatorname{Enc}_{k_{L}^{0}}\left(\operatorname{Enc}_{k_{R}^{1}}\left(k_{O}^{0}\right)\right) \\
c_{1,0} & =\operatorname{Enc}_{k_{L}^{1}}\left(\operatorname{Enc}_{k_{R}^{0}}\left(k_{O}^{0}\right)\right) \\
c_{1,1} & \left.=\operatorname{Enc}_{k_{L}}\left(\operatorname{Enc}_{k_{R}^{1}}^{(} k_{O}^{1}\right)\right)
\end{aligned}
$$

Attempt 3

select and return to Alice $\left(c_{0, B}, c_{1, B}\right)$
$5 \begin{aligned} & \text { decrypt } \\ & C=g(A, B)=\operatorname{Dec}_{k_{L}^{A}}\left(\operatorname{Dec}_{k_{R}^{B}}\left(c_{A, B}\right)\right)\end{aligned}$
send all cipher texts to Bob

$$
\mathscr{F}_{O T}\left(\left\{x_{0}, x_{1}\right\}, b\right) \mapsto\left(\emptyset, x_{b}\right)
$$

Garbling a Circuit

Final Attempt

1- Garbling Phase

Pick keys for each gate in C

$$
k_{L}^{0} k_{L}^{1} \quad w_{L} w_{R} \quad k_{R}^{0} k_{R}^{1}
$$

Compute the garbled output of each gate $c_{\alpha, \beta}^{g}=E n c_{k_{L}^{\alpha}}\left(E n c_{k_{R}^{\beta}}\left[k_{O}^{g(\alpha, \beta)}| | \mathbf{0}\right]\right)$

$$
\mathrm{C}=\left(\underset{\left\{c_{\alpha, \beta}^{g_{i}}\right\}_{\alpha, \beta \in\{0,1\}}^{i=1, \ldots, \# g \text { ates }},\left\{k_{\text {Alice's wire }}^{A}\right\}}{\text { send }}\right)
$$

4 cipher texts for each gate in C
1 pair of keys for each input wire of Bob
1 key for each input wire of Alice

Garbling a Circuit

Final Attempt

1- Garbling Phase

Pick keys for each gate in \mathbf{C}

Compute the garbled output of each gate $c_{\alpha, \beta}^{g}=E n c_{k_{L}^{\alpha}}\left(E n c_{k_{R}^{\beta}}\left[k_{O}^{g(\alpha, \beta)}| | \mathbf{0}\right]\right)$
this $\mathbf{0}$ value is simply a correctness check that helps Bob understand which key k_{o}^{\square} to use to proceed with the garbled evaluation.

Garbling a Circuit

Final Attempt

1- Garbling Phase

2 - Evaluation Phase

sequentially evaluate all gates in \mathbf{C}
this means Bob progressively decrypts each 4-tuple of ciphertexts using the keys he has at hand and proceeds using the key that decrypts to $k_{o}^{\square} \| 0$ (i.e., a bit strings that ends with a fixed number of 0 s)

send the garbled value of the output wire to Alice

Garbling a Circuit

Final Attempt

1- Garbling Phase

2 - Evaluation Phase

$$
\left.k_{\text {Bob }}^{B} \quad \mathrm{C}=\frac{\text { send }}{\left(\left\{c_{\alpha, \beta}^{g_{i}}\right\}_{\alpha, \beta \in\{0,1\}}^{=1, \ldots, \# \text { gates }},\left\{k_{\text {Alice }}^{A}\right\}\right.}\right)
$$

3 - Output Phase

lookup the garbled truth table for $g_{\# g a t e s}$

L	R	O
k_{L}^{0}	k_{R}^{0}	k_{O}^{0}
k_{L}^{0}	k_{R}^{1}	k_{O}^{0}

$$
k_{L}^{1} \quad k_{R}^{0} \quad k_{O}^{0}<k_{O}^{\mathbf{C}(A, B)} \quad 2 \text { find } k_{O}^{\mathbf{C}(A, B)} \text { and learn the bit } \mathbf{C}(A, B)
$$

$$
k_{L}^{1} \quad k_{R}^{1} \quad k_{O}^{1}
$$

This is Yao's protocol for generic secure two party computation!

Recipe To Compute any (Boolean) Function With 2PC

This is Yao's protocol for generic secure two party computation!

1. Alice picks a secret key k_{\triangle}^{\square} for every possible input/output of the gate
2. Alice send her input keys, and the truth-table cipher texts for each gate to Bob
3. Bob evaluates the garbled gate on its input and sends the outcome back to Alice (this is a secret key k^{\bullet})
4. Alice decodes the value $\bullet=\mathbf{C}(A, B)$ using k^{\bullet} and the garbled truth table of the final gate of the circuit
