
CRYPTOGRAPHY
(lecture 10)

Literature:
“Lecture Notes on Cryptographic Protocols” (ch 5.0,5.1,5.2.2,5.2.4, all ch 5)

“Efficient Secure Two-Party Protocols” by C. Hazay & H. Lindell (ch2, 6)

https://www.win.tue.nl/~berry/CryptographicProtocols/LectureNotes.pdf

Announcements

2

๏ Exercise session Dec 6 (8-9:45): by William (last)

๏ Lecture on Dec 6th (10-11:45): by Elena on advanced and fun things + Q&A

๏ Lecture on Dec 9th (10-11:45): by Victor on ABC [also zoom streaming]

๏ Lecture on Dec 13th (10-11:45): by Elena course recap + exercises + exam template

๏ No exercises/lectures (8-9:45) on Dec 9th, Dec 13th

๏ Office Hours by Ivan on weeks 48-49-50 on Wednesdays 13:00-14:00 and Fridays:
16:00-17:00 in 3128 and Zoom on demand

๏ Video Signal_Protocol.mp4 on part of Lecture 8 available on Canvas (Module 2) ⚠

๏ Lecture 9, updated slide 19 and new slide 20 for a different course

Introduction to MPC
Commitment Schemes (Pedersen)
(Verifiable) Secret Sharing (Shamir)
Oblivious Transfer

Module 3: Agenda

Σ (Sigma) Protocols
• Syntax

• Schnorr (Knowledge of dLog) - Proof

• Chaum-Pedersen (Same dLog)

• Compound Statements (OR, AND) - Proof

• Knowledge of Pedersen Commitments

Removing Interaction
• Fiat-Shamir Heuristic

Generic 2 Party Computation
• Garbled Circuits

• Yao’s Two Party Protocol

MPC Security
• The Real/Ideal World Paradigm

Zero-Knowledge Proofs
• Intuition

• Ideal Functionality

• Interactive ZK Proofs

3

HA3
HA3

HA3

HA3

Syntax for Multi-Party Computation Protocols (MPC)

4

Syntax Any multiparty computation protocol among parties is defined by
specifying a process that maps -tuples of inputs (one for each party) to
-tuples of outputs (one for each party). Formally this process is called ideal
functionality and is denoted by

Π n
n n

ℱ : {0,1}* × {0,1}*⋯ × {0,1}* → {0,1}* × {0,1}*⋯ × {0,1}*
ℱ(x1, x2, …, xn) = (f1(x1, …, xn) , …, fn(x1, …, xn))

(y1 , y2 , ……, yn)

Formalizing Security Notions for MPC

5

Sender Receiver

b ∈ {0,1}

x0, x1

xb

OT

Functionality

Privacy: No party should learn anything more than its prescribed output.

🧐 How can we model “a party learns nothing”?

whatever can be computed by a party participating in the
protocol can be computed based on its input and output only

🧐 ℱOTℱOT({x0, x1}, b) ↦ (Ø, xb)

Ideal World Vs Real World (Security Paradigm)

6

ideal functionality

IDEAL WORLD REAL WORLD

MPC
protocol

An MPC protocol allows multiple parties to jointly evaluate a specific function
over the parties’ private inputs
The goal of an MPC protocol is to provide security in the real world (given a set of
assumptions) that is equivalent to that in the ideal world.

7https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DzGLx_mLLu0c&psig=AOvVaw2apYsTgLReXypLHAZ3jP-3&ust=1650024734701000&source=images&cd=vfe&ved=2ahUKEwixrN2iw5P3AhXYZfEDHcXCDJcQjhx6BAgAEAw

https://www.youtube.com/watch?v=zGLx_mLLu0c

The Ideal World

8

ideal functionality

IDEAL WORLD

Te
A fully trusted third party carries
out the computation of
and distributes the to each party its
designated outcome

ℱ(x1, …, xn)

TeAll communication channels
are perfect (authenticated,
confidential, noise-free)

In reality, for cryptographers there is no trusted party but we can use this
ideal world as a benchmark against which to judge the security of an actual protocol.

ℱ

 can take control over any
subset of the parties
𝒜

The Real World

9

Te
The trusted party is replaced by an MPC protocol .
For each party, specifies a “next-message” function
that takes as input sec.par, , some randomness , and
the list of messages received so far; the “next-message”
function outputs either a message and addressee, or
else instructions to recover the party’s output.

Πℱ

Πℱ

xi ri

REAL WORLD

MPC
protocol

The real world protocol is considered secure if any effect that any adversary
can achieve in the real world can also be achieved by a corresponding

adversary in the ideal world.

Πℱ

Simulator

Defining Security in the Real-Ideal World Paradigm

10

The view of a party consists of its private input, its random tape, and the list of
all messages received during the protocol.

The view of an adversary consists of the combined views of all corrupt parties.

Anything an adversary learns from running the protocol must be an efficiently
computable function of its view.

’s view in the ideal world consists of all inputs sent
to the ideal functionality and outputs receives from it.
𝖲𝗂𝗆

Simulator

view

view

REAL WORLD

MPC
protocol

=c

∀

∃

Adversary

Computationally
indistinguishable
distributions

MPC Security Against Semi-Honest Adversaries

11

A protocol is secure against semi-honest adversaries if the corrupted parties in the
real world have views that are indistinguishable from their views in the ideal world.

MPC Security A protocol securely realizes the functionality in the presence
of semi-honest adversaries if there exists a simulator such that, for every
subset of corrupted parties and all inputs , it holds that

i.e., the real and ideal views are computationally indistinguishable in the security
parameter .

Π ℱ
𝖲𝗂𝗆

C ⊆ {1,2,…, n} x1, …, xn

RealΠ(λ, C; x1, …, xn) =c Idealℱ,𝖲𝗂𝗆(λ, C; x1, …, xn)

λ ∈ ℕ

🧐 No in here?𝒜

Security Against Malicious Adversaries

12

aka Active: is a semi-honest adversary who additionally may deviate
arbitrarily from the prescribed protocol in an attempt to violate security

REAL WORLD

MPC
protocol

 may send inconsistent
messages to different parties

𝒜

what can we guarantee
about the output of
corrupted parties?

how does this
affect the output

of honest parties?

how can we set the
input of corrupted
parties in ?Ideal

Introduction to MPC
Commitment Schemes (Pedersen)
(Verifiable) Secret Sharing (Shamir)
Oblivious Transfer

Module 3: Agenda

Σ (Sigma) Protocols
• Syntax

• Schnorr (Knowledge of dLog) - Proof

• Chaum-Pedersen (Same dLog)

• Compound Statements (OR, AND) - Proof

• Knowledge of Pedersen Commitments

Removing Interaction
• Fiat-Shamir Heuristic

Generic 2 Party Computation
• Garbled Circuits

• Yao’s Two Party Protocol

MPC Security
• The Real/Ideal World Paradigm

Zero-Knowledge Proofs
• Intuition

• Ideal Functionality

• Interactive ZK Proofs

13

Nollkunskapsbevis

Interactive Proofs

14

You can't have your cake and eat it too!

xfmm- xjui dszqup zpv ep ;*

zero knowledge proofs

Zero Knowledge Proofs - a Metaphor

15

Intuitively: a protocol is zero-knowledge if it communicates exactly the
knowledge that was intended, and no extra (zero) knowledge.

How To Formalise This Into Math/Crypto?

16

The most general formalisation: x ∈ L iff ∃ w s.t. R(x,w) = 1

x w

set of all valid
sudoku starters

solution satisfies
sudoku rules

How To Formalise This Into Math/Crypto?

17

circuit satisfiability: ∃ w s.t. C(w)=1

factoring: ∃ p,q s.t. N = pq ⋀ p,q primes

dLog: ∃ sk s.t. pk = gsk

statement witness

w

(p,q)

sk

the language L is usually implicit in the application, what we will make explicit is the relation R

Definition: Zero Knowledge Proof System

A zero-knowledge (ZK) proof system is a process in which a Prover probabilistically convinces
a verifier of the correctness of a mathematical proposition, and the verifier learns nothing else.

zero-knowledge
the verifier learns nothing else

Zero Knowledge Proof (Ideal Functionality)

18

Prover Verifier

(R, x, w)

(R , x , 0 or 1)

ZK proof

Functionality

ℱZK({R, x, w}, Ø) ↦ (Ø, {R, x, 𝖡𝗈𝗈𝗅[R(x, w) = 1]})

Prover learns nothing, Verifier only learns whether
satisfies , but nothing else about the secret

w
R(x, ⋅) w

inputs to R

relation / circuit

The prover claims to know a witness such that the relation holds for the statement w R(x, w) = 1 x

🧐 ℱZK

Interactive ZK Proof - Syntax

19

Syntax: A Zero Knowledge proof () for a relation represented as a circuit , is an
interactive protocol between a Prover (P) and a Verifier (V) that realizes the following:

๏ Input: P and V know a circuit .  
 In addition, P knows a secret input to

๏ Output: V learns whether (i.e., whether P knows an input that satisfies the
circuit)

ΠZK R Cx

Cx : {0,1}n → {0,1}
w ∈ {0,1}n Cx

Cx(w) = 1 w
Cx(⋅) = R(x, ⋅)

Prover Verifier

accept/rejectI know s.t. w Cx(w) = 1

ZK Proof - Properties

20

Correctness: If P knows s.t. , then at the end of the protocol, V
will reject only with negligible probability

Soundness: If a cheating prover P* does not know a valid witness , then at
the end of the protocol, V will accept only with negligible probability

Zero-Knowledge: Once the protocol is completed, V learns nothing about

w Cx(w) = 1 ΠZK

w
ΠZK

w

This property is sometimes called ‘completeness'

 is malicious𝖯* = 𝒜

A Prime Example: ZK Proof for Graph Isomorphism

21

Example from Wikipedia

A (undirected) graph is a pair = (V,E), where V is a set of nodes (called vertexes)
and E is a binary symmetric relation on V (identifying the edges of the graph).

𝒢

A graph isomorphism between (V,E) and (V’,E’) is a bijection such that
.

ϕ ϕ : 𝒢 → 𝒢′￼

(v1, v2) ∈ E iff (ϕ(v1), ϕ(v2)) ∈ E′￼

(a) = 1

(b) = 6

(c) = 8

(d) = 3

ϕ
ϕ
ϕ
ϕ

(g) = 5

(h) = 2

(i) = 4

(j) = 7

ϕ
ϕ
ϕ
ϕ

V = {1,2,…,8}

E = {(1,2), (1,5), (1,4), (2,6)…}

https://en.wikipedia.org/wiki/Graph_isomorphism

22

A Few Words About ZK Proofs

In general ZK Proofs are expensive in terms of
computation & communication.

The theory of ZK Proofs is extremely fascinating
and it is fundamental in cryptography.

ZK Proofs can be used to achieve malicious
security in multi-party computation protocols.

…but there are very useful exceptions!

Introduction to MPC
Commitment Schemes (Pedersen)
(Verifiable) Secret Sharing (Shamir)
Oblivious Transfer

Module 3: Agenda

Σ (Sigma) Protocols
• Syntax

• Schnorr (Knowledge of dLog) - Proof

• Chaum-Pedersen (Same dLog)

• Compound Statements (OR, AND) - Proof

• Knowledge of Pedersen Commitments

Removing Interaction
• Fiat-Shamir Heuristic

Generic 2 Party Computation
• Garbled Circuits

• Yao’s Two Party Protocol

MPC Security
• The Real/Ideal World Paradigm

Zero-Knowledge Proofs
• Intuition

• Ideal Functionality

• Interactive ZK Proofs

23

A special case of
interactive ZK proofs

Σ Protocols General Formalism

24

Definition A Σ-protocol for relation if it is a three-move, public-coin protocol of the
form depicted above that additionally satisfies the following requirements:

• Completeness: If P and V follow the protocol on input and private input to P

where , then V always accepts.

• Special soundness: There exists a PPT algorithm (extractor) that given any

and any pair of accepting transcripts for , with , outputs
 such that .

• Special honest verifier zero knowledge: for every and such that
and every it holds that

where V ’s random tape equals and is the challenge length.

R

x w
(x, w) ∈ R

ℰ x
(a, e, z), (a, e′￼, z′￼) x e ≠ e′￼

w (x, w) ∈ R
x w (x, w) ∈ R

e ∈ {0,1}t

{Sim(x, e)} =c {⟨P(x, w), V(x, e)⟩}
e t

Prover (P)
Verifier (V)

accept/reject

I know s.t. w Cx(w) = 1
a ← A(w, r)

e ← ${0,1}t

z ← Z(w, r, e)

I know a description of
Cx(⋅) = R(x, ⋅)

0/1 ← V(a, e, z)

Prover Verifier

Schnorr Σ-Protocol for Knowledge of dLog

25

r ← $ℤq
a = gr ∈ 𝔾

I know s.t. w x = gw

๏ the description of a group of prime order with generator

๏ the value

๏ , defined as

๏ the challenge length

𝔾 q g
x ∈ 𝔾

R(x, w) : 𝔾 × ℤq → {0,1} R(x, w) = 1 iff x = gw

t = log2(q) ∈ ℕ

public inputs (available to both P and V)

a ← A(w, r)

e ← ${0,1}t

z ← Z(w, r, e)

0/1 ← V(a, e, z)

 z = r + e ⋅ w ∈ ℤq

z′￼ = a ⋅ xe ∈ 𝔾
if return 1

else return 0

gz = z′￼

Completeness

Special Soundness

Special HV ZK

xijufcpbse
qsppgt

Sometimes called Schnorr
identification protocol

Prover
Verifier

Chaum–Pedersen Σ-Protocol (Proof of Same dLog)

26

r ← $ℤq
a1 = gr ∈ 𝔾
a2 = hr ∈ 𝔾
a = (a1, a2) ∈ 𝔾2

a ← A(w, r)

e ← $ℤq

z ← Z(w, r, e)

0/1 ← V(a, e, z)

 z = r + e ⋅ w ∈ ℤq

for

if

 return 1

else return 0

b ∈ {1,2}
z′￼b = ab ⋅ xe

b ∈ 𝔾
gz = z′￼1 & hz = z′￼2

ZKPoK{w : x1 = gw 𝖺𝗇𝖽 x2 = hw}

R = {((𝔾, q, g, h, x1, x2) , w) |g, h ∈ 𝔾 & x1 = gw & x2 = hw}

 This solution is almost a parallel repetition of Schnorr
(except that the challenge(s) are now squashed into a single one for efficiency)

🧐 Looks familiar?

zero-knowledge proof of knowledge

Chaum–Pedersen Σ-Protocol (Proof of Same dLog)

27

r ←$ ℤq
a1 = gr ∈ 𝔾
a2 = hr ∈ 𝔾
a = (a1, a2) ∈ 𝔾2

 z = r + e ⋅ w ∈ ℤq

for

if

 return 1

else return 0

b ∈ {1,2}
z′￼b = ab ⋅ xe

b ∈ 𝔾
gz = z′￼1 & hz = z′￼2

ZKPoK{w : x1 = gw 𝖺𝗇𝖽 x2 = hw}

A

Z

V

🧐 what can we use this for?

Let and
then this Σ-Protocol is a
proof that is a
Diffie-Hellman Tuple!

w = skA h = gskB

(g, h, x1, x2)

R = {((𝔾, q, g, h, x1, x2) , w) |g, h ∈ 𝔾 & x1 = gw & x2 = hw}

Proving Compound Statements (AND, OR)

28

RdDH = {((𝔾, q, g, h, x1, x2) , w) |g, h ∈ 𝔾 & x1 = gw & x2 = hw}

make P prove both statements in parallel using a single challenge for both proofs. e

“AND” proofs

“OR” proofs
are a bit more complicated…

P wants to prove that: either OR

ZK imposes to do this without revealing which is the case

(x0, w) ∈ R0 (x1, w) ∈ R1

🧐 The Trick : P completes the protocol for the instance that is true and “fakes” a
proof for the other statement by running the simulator (in a clever way)

xb

Proving “OR” Statements

29

🧐 The Trick : P completes the protocol for the instance that is true and “fakes” a
proof for the other statement by running the simulator (in a clever way)

xb

Prover

Verifier

 is a valid -witness only for but V
should not know which
w R xb

b ∈ {0,1}

Simulator

eb = e ⊕ e1−b
zb ← Zxb

(w, r, eb)

(a0, a1)

{(e0, e1), (z0, z1)}

e ← ${0,1}t

check all:

Vx0
(a0, e0, z0) = 1?

Vx1
(a1, e1, z1) = 1?

e0 ⊕ e1 = e

 run on 𝖲𝗂𝗆 (x1−b, e1−b)
pick e1−b ← ${0,1}t

ab ← Axb
(w, r)

simulated transcript
 (a1−b, e1−b, z1−b)

ZKPoK{w : R(x0, w) = 1 𝗈𝗋 R(x1, w) = 1}

Proving “OR” Statements

30

ZKPoK{w : R(x0, w) = 1 𝗈𝗋 R(x1, w) = 1}

eb = e ⊕ e1−b
zb ← Zxb

(w, r, eb)

(a0, a1)

{(e0, e1), (z0, z1)}

e ← ${0,1}t

check all:

Vx0
(a0, e0, z0) = 1?

Vx1
(a1, e1, z1) = 1?

e0 ⊕ e1 = e

 run on 𝖲𝗂𝗆 (x1−b, e1−b)
pick e1−b ← ${0,1}t

follows from the completeness of & Π0 = (Ax0
, Zx0

, Vx0
) Π1 = (Ax1

, Zx1
, Vx1

)

Special soundness: There exists a PPT algorithm (extractor) that given any and any pair of
accepting transcripts for , with , outputs such that .

ℰ x
(a, e, z), (a, e′￼, z′￼) x e ≠ e′￼ w (x, w) ∈ R

Completeness

 = “ ”ΠOR Π0 ∨ Π1

ab ← Axb
(w, r)

simulated transcript
 (a1−b, e1−b, z1−b)

Proving “OR” Statements

31

Special Soundness

Special soundness: [..] given any pair of accepting transcripts with , outputs e ≠ e′￼ w

(a0, a1, e, e0, e1, z0, z1)

(a0, a1, e′￼, e′￼0, e′￼1, z′￼0, z′￼1)

⇒

e = e0 ⊕ e1

e′￼ = e′￼0 ⊕ e′￼1

⇒

e ⊕ e′￼ ≠ 0

 s.t. ∃c ∈ {0,1} ∧ ∃i ∈ {1,…, t} ec[i] ≠ e′￼c[i]

1. Find and

2. Run on the -th
pair of transcripts

c i

ℰΠc
(c, i)

⇒ ⇒ℰΠOR

eb = e ⊕ e1−b
zb ← Zxb

(w, r, eb)

(a0, a1)

{(e0, e1), (z0, z1)}

e ← ${0,1}t

check all:

Vx0
(a0, e0, z0) = 1?

Vx1
(a1, e1, z1) = 1?

e0 ⊕ e1 = e

 run on 𝖲𝗂𝗆 (x1−b, e1−b)
pick e1−b ← ${0,1}t

 = “ ”ΠOR Π0 ∨ Π1

ab ← Axb
(w, r)

simulated transcript
 (a1−b, e1−b, z1−b)

ZKPoK{w : R(x0, w) = 1 𝗈𝗋 R(x1, w) = 1}

Proving “OR” Statements

32

Special HV ZK

follows from using and on inputs and respectively, where these are chosen
at random subject to for the string received in input by .

𝖲𝗂𝗆0 𝖲𝗂𝗆1 e0 e1
e0 ⊕ e1 = e e 𝖲𝗂𝗆OR

Finally, the probability distribution over transcripts is independent of the branch P is
using for the real ZK Proof

b

eb = e ⊕ e1−b
zb ← Zxb

(w, r, eb)

(a0, a1)

{(e0, e1), (z0, z1)}

e ← ${0,1}t

check all:

Vx0
(a0, e0, z0) = 1?

Vx1
(a1, e1, z1) = 1?

e0 ⊕ e1 = e

 run on 𝖲𝗂𝗆 (x1−b, e1−b)
pick e1−b ← ${0,1}t

 = “ ”ΠOR Π0 ∨ Π1

ab ← Axb
(w, r)

simulated transcript
 (a1−b, e1−b, z1−b)

ZKPoK{w : R(x0, w) = 1 𝗈𝗋 R(x1, w) = 1}

(Not needed for the exam)

