CRYPTOGRAPHY

(Lecture 1)

Literature:

"Handbook of Applied Cryptography" (ch 1, 2.0, 2.1.1,2.1.2,2.1.3,9.1,9.2.2), optional 2.2.1
"Lecture Notes on Introduction to Cryptography" by V. Goyal (ch2.0-2.3, 11.1-11.3)
"A Graduate Course in Applied Cryptography" by D. Boneh and V. Shoup (ch 3.12)
"Commitment Schemes and Zero Knowledge Protocols" by I. Damgård, J. Buus Nielsen

Lecture Agenda

Introduction

- Cryptography: Meaning and Aims
- Core Concepts in Modern Cryptography
- The Attacker's Resources
- Terminology

Commitment Schemes \& One-Way Functions

- Intuition
- Cryptographic Hash Functions
- Definitions (Syntax \& Properties)
- Constructions

The Real World

The World to the Eyes of Cryptography

The Goal of Cryptography: "Make our Digital World Safe"

- Confidentiality
- Data integrity
\& Authenticity
(2. Entity identification
- Access control / authorisation
(9) Anonymity

Non-repudiation
(0) Privacy

Foundations of Modern Cryptography (1980-Now)

CRYPTOGRAPHY

CRYPTANALYSIS
Rigorous definitions

- What does security mean?
- What are the attacker's goal and resources?
- Precise mathematical security assumptions (formally define "hard")
Rigorous logic reasoning to prove security
Lots of heuristics to define exact security levels
Solutions need to work in practice
© Efficient algorithms
© Use the best size/security ratios

Useful Terminology

Deterministic : refers to a value that is set, or to a function that given an input always returns the same output.

Notation: $b=0, A \lg (x)=y$
Random : refers to a value that is drawn from a set using the uniform distribution (all possibilities are equiprobable).

Notation: $b \leftarrow \$\{0,1\}$
Randomised or Probabilistic : refers to a function or algorithm that involves sampling and using randomness, thus the output is non-deterministic (unless the randomness is specified).

Notation: $y \leftarrow A \lg (x)$ and there exists $r n d \in\{0,1\}^{n}$ such that $y=A \lg (x ; r n d)$

The Adversary in Cryptography

The Attacker's Resources

Adversarial Behaviour: the actions that corrupted parties are allowed to take.
© Passive: \mathscr{A} monitors the communication channel as an eavesdropper, but does not modify messages between parties.
© Active: \mathscr{A} monitors the communication channel as an eavesdropper and additionally can drop, alter or stop information sent between parties.

Adversarial (Computational) Power:

© Polynomial time (classical) : \mathscr{A} is allowed to run in (probabilistic) polynomial time (and sometimes, expected polynomial time). This is abbreviated in PPT or "efficient".
© Computationally unbounded: \mathscr{A} has no computational limits whatsoever, is not bound to any complexity class and is not assumed to run in polynomial time.
© Quantum: \mathscr{A} has access to a quantum computer.

One Fundamental Definition

Negligible A function $\operatorname{negl}(x): \mathbb{N} \rightarrow \mathbb{R}_{\geq 0}$ is negligible in x if for any positive polynomial $p(x)$ it holds that

$$
\operatorname{negl}(x) \leq \frac{1}{p(x)} \quad \text { for all } x \geq x_{0} \in \mathbb{N}
$$

Intuition: Events that occur with negligible probability occur so seldom that polynomial time algorithms will never see them happening.

This definition is asymptotic ("it holds from a certain point onwards"). This is a common approach in complexity-based cryptography.

In practice, if one needs to pick a value, then $\operatorname{negl}(x)<2^{-128}$ is considered to be negligible (but this depends on the context, and may yield inefficient constructions).

Lecture Agenda

Introduction

- Cryptography: Meaning and Aims
- Core Concepts in Modern Cryptography
- The Attacker's Resources
- Terminology

Commitment Schemes \& One-Way Functions

- Intuition
- Cryptographic Hash Functions

- Definitions (Syntax \& Properties)
- Constructions

Use Case: Playing Rock-Paper-Scissors

Rock-Paper-Scissors Over the Internet

One-Way Functions

"easy" to compute and "hard" to invert

One-Way Functions

Definition: ONE-WAY FUNCTION

A function $f:\{0,1\}^{n} \rightarrow\{0,1\}^{d}$ is one-way if:
(1) There exists an algorithm that computes $f(x)$ in polynomial time for all inputs $x \in\{0,1\}^{n}$ (f is efficiently computable)
(2) For every PPT algorithm \mathscr{A} there is a negligible function negl $l_{\mathscr{A}}(\cdot)$ such that for sufficiently large values of $n \in \mathbb{N}$ it holds that

$$
\operatorname{Pr}\left[f(x)=f\left(x^{\prime}\right) \mid x \leftarrow \$\{0,1\}^{n}, x^{\prime} \leftarrow \mathscr{A}(f(x))\right] \leq n e g l_{\mathscr{A}}(n)
$$

conditional probability

Probability Theory Lightning-Fast Recap

Probability Theory provides rigorous foundation to measures the likelihood that an event happens.

(2). "It's not at all hard to understand a person; it's only hard to listen without bias."

Definition: CONDITIONAL PROBABILITY

Given two events A, B with $\operatorname{Pr}[B]>0$, the conditional probability of event A given B (that is, the probability that A happens assuming B has happened) is denoted as $\operatorname{Pr}[A \mid B]$ and it is computed as:

$$
\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}
$$

Bayes' Theorem (very useful when calculating values)

$$
\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A] \cdot \operatorname{Pr}[B \mid A]}{\operatorname{Pr}[B]}
$$

Constructing One Way Functions (OWF)

Example: OWF from integer factorisation

Consider $f:\{k$ - bit primes $\} \times\{k$ - bit primes $\} \rightarrow \mathbb{N}$ defined as: $f(p, q)=p \cdot q$. $f(\cdot)$ is a one-way function if integer factorisation is (computationally) hard.
(2) what happens if we consider $f:\{$ primes $\} \times\{$ primes $\} \rightarrow \mathbb{N}, f(p, q)=p \cdot q$?

A Special Case of OWF: Cryptographic Hash Functions

Definition: HASH FUNCTION

A function $H:\{0,1\}^{n} \rightarrow\{0,1\}^{d}$.is a
cryptographic hash function if:
(1) H is a one-way function (efficient to compute, hard to invert) And at least one of the following holds

(2) Preimage resistance (hard to invert when $d<n$ and n is large enough)

$$
\operatorname{Pr}\left[f(x)=f\left(x^{\prime}\right) \mid x \leftarrow \$\{0,1\}^{n}, x^{\prime} \leftarrow \mathscr{A}(f(x))\right] \leq \operatorname{negl}(n)
$$

(3) 2nd preimage resistance

$$
\operatorname{Pr}\left[f(x)=f\left(x^{\prime}\right) \mid x \leftarrow \$\{0,1\}^{n}, x^{\prime} \leftarrow \mathscr{A}(x, f(x)), x \neq x^{\prime}\right] \leq n e g l(n)
$$

(4) Collision resistance

$$
\operatorname{Pr}\left[f(x)=f\left(x^{\prime}\right) \mid x, x^{\prime} \leftarrow \mathscr{A}(f), x \neq x^{\prime}\right] \leq \operatorname{negl}(n)
$$

State-of-the-Art: Secure Hash Algorithm (SHA2)

SHA-2 family

sha256("TDA352") = 3956a5541f782d61b7ca95e80496871e0d1f92a91b4836f65f21cc18e430ee86
sha256("TBA352") = 99d626fd9c74f8e7a1267ad7512ad13b92b841cdb11a0b132b1e43d8dfc80ed3

About SHA256

Preimage resistance attack:

\mathscr{A} will eventually find x (given y) : it will take at most $2^{256} \approx 10^{78}$ trials

Collision resistance

\mathscr{A} will eventually find x and x^{\prime} that both hash to a $\mathrm{y} . .$. and this is expected ${ }^{*}$ to take 2^{128} trials
$\approx 10^{13}$ years on the world's fastest super computer

Classification of Hash Functions and Their Applications

Figure 9.1: Simplified classification of cryptographic hash functions and applications.

OWF: an Important Security Note

OWF only guarantee that the input x is not leaked entirely. This means that it is still possible that $f(x)$ leaks a substantial amount of information about x.

Example:

Let $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be a OWF.
Consider the function $g:\{0,1\}^{2 n} \rightarrow\{0,1\}^{2 n}$ defined as $g\left(x_{0}| | x_{1}\right):=f\left(x_{0}\right)| | x_{1}$.
Even if $g()$ reveals half of its input, it is still a OWF! (3) Why?

THERE'S ALWAYS A WAY = IF

Commitment Schemes Definitions

Syntax

A commitment scheme over a set of messages \mathscr{M}, a set of keys/randomness $\{0,1\}^{n}$ and a set of commit values C is defined by the two following PPT algorithms:

- Commit $(m, r)=c$ is a deterministic algorithm that takes in input a message m and a random string r; and outputs a commitment c to m.
- Open $(m, r, c) \in\{0,1\}$ this is a deterministic algorithm that takes in input a message m and a random string r, and a commitment c, and returns 1 (accept) if c is a valid commitment (for m, r); and 0 (reject) otherwise.
... and satisfying the binding and hiding properties (given next)

Commitment Schemes Definitions

Binding A commitment scheme is said to be binding if no
adversary \mathscr{A} can win the following game:
\mathscr{A} must output two distinct messages $m, m^{*} \in \mathscr{M}$ and two keys $r, r^{*} \in\{0,1\}^{n}$ such that $m \neq m^{*}$ and $\operatorname{Commit}(m, r)=\operatorname{Commit}\left(m^{*}, r^{*}\right)$.

$$
\operatorname{Pr}\left[\operatorname{Commit}(m, r)=c=\operatorname{Commit}\left(m^{*}, r^{*}\right) \mid m \neq m^{*}\right] \leq \operatorname{negl}(n)
$$

Commitment Schemes Definitions

Binding A commitment scheme is said to be information-theoretically (resp. computationally) binding if no infinitely powerful (resp. computationally bounded) adversary \mathscr{A} can win the following game:
\mathscr{A} must output two distinct messages $m, m^{*} \in \mathscr{M}$ and two keys $r, r^{*} \in\{0,1\}^{n}$ such that $m \neq m^{*}$ and $\operatorname{Commit}(m, r)=\operatorname{Commit}\left(m^{*}, r^{*}\right)$.
computational (complexity-based) (unconditional)

Commitment Schemes Definitions

Hiding A commitment scheme is said to be information-theoretically (resp. computationally) hiding if no infinitely powerful (resp. computationally bounded) adversary can win the following game:

1. \mathscr{A} outputs two messages m_{0} and m_{1}.
2. \mathscr{C} selects a random bit $b \leftarrow \$\{0,1\}$; picks a random $r \leftarrow \$\{0,1\}^{n}$; computes $c=\operatorname{Commit}\left(m_{b}, r\right)$; and returns c to \mathscr{A}.
3. \mathscr{A} outputs a bit b^{*} as a guess for b.

Let's Construct a Secure Commitment Scheme Using A Cryptographic Hash Function

Commitment Schemes: a Simple Construction

hash function

wait until everyone else 'commits', and then 'reveal' r
\square

A Hash-Based Commitment Scheme

$\operatorname{Commit}(m, r)=H(m \| r)=: c$

$$
\operatorname{Open}(m, r, c)=1 \text { if } c=H(m \| r) ; \text { otherwise return } 0
$$

© Binding? Yes!

$$
\operatorname{Pr}\left[\operatorname{Commit}(m, r)=c=\operatorname{Commit}\left(m^{*}, r^{*}\right) \mid m \neq m^{*}\right] \leq n e g l(n)
$$

$$
\operatorname{Pr}\left[H(m \| r)=H\left(m^{*} \| r^{*}\right) \mid m \neq m^{*}\right] \leq n e g l \quad\left\{\begin{array}{l}
\text { second preimage resistance } \\
\text { of the hash function } \mathrm{H}
\end{array}\right.
$$

© Hiding? Yes!

$$
\left|\operatorname{Pr}\left[b^{*}=b\right]-1 / 2\right| \leq n e g l(n)
$$

$$
\operatorname{Pr}\left[b^{*}=b \mid m_{0}, m_{1}, H\left(m_{b}| | r\right)\right] \leq n e g l \text { preimage resistance of } \mathrm{H}
$$

An Insecure Construction

$$
\begin{aligned}
& \operatorname{Commit}(m, r)=m+r=: c \\
& \operatorname{Open}(m, r, c)=1 \text { if } c=m+r ; \text { otherwise } 0
\end{aligned}
$$

(2) Hiding?
(2) Binding?

What Can You Do With Commitment Schemes?

