CRYPICERAPHY

(Lecture 1)

Literature:

"<u>"Lecture Notes on Introduction to Cryptography</u>" by V. Goyal (ch2.0-2.3, **11.1-11.3**) "<u>"A Graduate Course in Applied Cryptography</u>" by D. Boneh and V. Shoup (ch 3.12)

"Handbook of Applied Cryptography" (ch 1, 2.0, 2.1.1,2.1.2,2.1.3,9.1,9.2.2), optional 2.2.1 "Commitment Schemes and Zero Knowledge Protocols" by I. Damgård, J. Buus Nielsen

Lecture Agenda

Introduction

- Cryptography: Meaning and Aims
- Core Concepts in Modern Cryptography
- The Attacker's Resources
- Terminology

Commitment Schemes & One-Way Functions

- Intuition
- Cryptographic Hash Functions
- Definitions (Syntax & Properties)
- Constructions

The Real World

The World to the Eyes of Cryptography

The Goal of Cryptography: "Make our Digital World Safe"

- **Confidentiality**
- **Data integrity**
- **Authenticity**
- **Entity identification**

- Access control / authorisation
- Anonymity
- **Non-repudiation**

Foundations of Modern Cryptography (1980-Now)

Rigorous definitions

- What does security mean?
- What are the attacker's goal and resources?
- Precise mathematical security assumptions (formally define "hard")
- **Rigorous logic reasoning to prove security**
- Lots of heuristics to define exact security levels Solutions need to work in practice
 - Efficient algorithms
 - Our content of the security of the security

When I say "crypto" I mean "cryptography" not "cryptocurrency"

Useful Terminology

always returns the same output.

Notation: b = 0, Alg(x) = y

Random : refers to a value that is drawn from a set using the uniform distribution (all possibilities are equiprobable).

Notation: $b \leftarrow$ \${0,1}

randomness is specified).

Deterministic : refers to a value that is set, or to a function that given an input

Randomised or **Probabilistic** : refers to a function or algorithm that involves sampling and using randomness, thus the output is non-deterministic (unless the

Notation: $y \leftarrow Alg(x)$ and there exists $rnd \in \{0,1\}^n$ such that y = Alg(x; rnd)

The Adversary in Cryptography

The Attacker's Resources

Adversarial Behaviour: the actions that corrupted parties are allowed to take.

- \bullet **Passive:** \mathscr{A} monitors the communication channel as an eavesdropper, but does not modify messages between parties.
- \bullet Active: \mathscr{A} monitors the communication channel as an eavesdropper and additionally can drop, alter or stop information sent between parties.

Adversarial (Computational) **Power:**

- Polynomial time (classical): \mathscr{A} is allowed to run in (probabilistic) polynomial time (and sometimes, expected polynomial time). This is abbreviated in **PPT** or "efficient".
- Output ationally unbounded: A has no computational limits whatsoever, is not bound to any complexity class and is not assumed to run in polynomial time.
- Quantum: \mathscr{A} has access to a quantum computer.

One Fundamental Definition

polynomial p(x) it holds that

Intuition: Events that occur with negligible probability occur so seldom that polynomial time algorithms will never see them happening.

This definition is asymptotic ("it holds from a certain point onwards"). This is a common approach in complexity-based cryptography.

In practice, if one needs to pick a value, then $negl(x) < 2^{-128}$ is considered to be negligible (but this depends on the context, and may yield inefficient constructions).

Lecture Agenda

Introduction

- Cryptography: Meaning and Aims
- Core Concepts in Modern Cryptography
- The Attacker's Resources
- Terminology

Commitment Schemes & One-Way Functions

- Intuition
- Cryptographic Hash Functions
- Definitions (Syntax & Properties)
- Constructions

Use Case: Playing Rock-Paper-Scissors

11

Rock-Paper-Scissors Over the Internet

- How do we formalise the game?
- What are the security requirements?
- What tool can we use to realise this?

One-Way Functions

"easy" to compute and "hard" to invert

One-Way Functions

Definition: ONE-WAY FUNCTION

A function $f: \{0,1\}^n \rightarrow \{0,1\}^d$ is one-way if:

(1) There exists an algorithm that computes f(x) in **polynomial time** for all inputs $x \in \{0,1\}^n$ (f is efficiently computable)

(2) For every PPT algorithm \mathscr{A} there is a **negligible** function $negl_{\mathscr{A}}(\cdot)$ such that for sufficiently large values of $n \in \mathbb{N}$ it holds that

$$Pr[f(x) = f(x') \mid x \leftarrow \$\{0,1\}^n, x' \leftarrow$$

conditional probability

- $-\mathscr{A}(f(x))] \leq negl_{\mathscr{A}}(n)$

win / lose

14

Probability Theory Lightning-Fast Recap

Probability Theory provides rigorous foundation to measures the likelihood that an event happens.

Recap on Probability Theory on Canvas for more details

Definition: CONDITIONAL PROBABILITY

Given two events A,B with Pr[B] > 0, the conditional probability of event A given B (that is, the probability that A happens assuming B has happened) is denoted as $Pr[A \mid B]$ and it is computed as:

$$Pr[A \mid B] = \frac{Pr[A \cap B]}{Pr[B]}$$

Bayes' Theorem (very useful when calculating values) $Pr[A] \cdot Pr[B|A]$ $Pr[A \mid B] =$ Pr[B]

15

Constructing One Way Functions (OWF)

Example: OWF from integer factorisation Consider $f: \{k - bit primes\} \times \{k - bit primes\} \rightarrow \mathbb{N}$ defined as: $f(p,q) = p \cdot q$. $f(\cdot)$ is a one-way function if integer factorisation is (computationally) hard.

Plenty more provable secure examples...but we need more math (Module 2)

@ what happens if we consider $f : \{primes\} \times \{primes\} \rightarrow \mathbb{N}, f(p,q) = p \cdot q ?$

A Special Case of OWF: Cryptographic Hash Functions

Definition: HASH FUNCTION

A function $H : \{0,1\}^n \rightarrow \{0,1\}^{d_*}$ is a cryptographic hash function if:

(1) H is a one-way function (efficient to compute, hard to invert)

And at least one of the following holds

(2) **Preimage resistance** (hard to invert when d < n and n is large enough)

 $Pr[f(x) = f(x') \mid x \leftarrow \$\{0,1\}^n, x' \leftarrow \mathscr{A}(f(x))] \le negl(n)$

(3) 2nd preimage resistance

 $Pr[f(x) = f(x') \mid x \leftarrow \$\{0,1\}^n, x' \leftarrow \mathscr{A}(x, f(x)), x \neq x'] \le negl(n)$

(4) Collision resistance

$$Pr[f(x) = f(x') | x, x' \leftarrow \mathscr{A}(f)$$

State-of-the-Art: Secure Hash Algorithm (SHA2)

sha256("TDA352") = 3956a5541f782d61b7ca95e80496871e0d1f92a91b4836f65f21cc18e430ee86
sha256("TBA352") = 99d626fd9c74f8e7a1267ad7512ad13b92b841cdb11a0b132b1e43d8dfc80ed3

About SHA256

Preimage resistance attack: \mathscr{A} will eventually find x (given y) : it will take at most $2^{256} \approx 10^{78}$ trials

Collision resistance

 \mathscr{A} will eventually find x and x' that both hash to a y... and this is **expected*** to take 2^{128} trials $\approx 10^{13}$ years on the world's fastest super computer

Х

x ′

* By the birthday paradox, we will find out more about it in Module 2 19

Classification of Hash Functions and Their Applications

Figure 9.1: Simplified classification of cryptographic hash functions and applications.

OWF: an Important Security Note

OWF only guarantee that the input x is not leaked *entirely*. This means that it is still possible that f(x) leaks a substantial amount of information about x.

Example:

Let $f: \{0,1\}^n \to \{0,1\}^n$ be a OWF. Consider the function $g: \{0,1\}^{2n} \to \{0,1\}^{2n}$ defined as $g(x_0 | |x_1) := f(x_0) | |x_1$. Even if g() reveals half of its input, it is still a OWF! \bigotimes Why?

21

THERE'S ALWAYS A WAY - IF YOU'RE COMMITTED.

Tony Robbins

Back to Commitment Schemes

Not in crypto: Once you commit, you cannot change your mind!

Syntax

A commitment scheme over a set of messages \mathcal{M} , a set of keys/randomness $\{0,1\}^n$ and a set of commit values C is defined by the two following PPT algorithms:

and a random string r; and outputs a commitment c to m.

• Open $(m, r, c) \in \{0, 1\}$ this is a deterministic algorithm that takes in input a c is a valid commitment (for m, r); and 0 (reject) otherwise.

... and satisfying the **binding** and **hiding** properties (given next)

- Commit(m, r) = c is a deterministic algorithm that takes in input a message m
 - message *m* and a random string *r*, and a commitment *c*, and returns 1 (accept) if

Binding A commitment scheme is said to be **binding** if no adversary \mathscr{A} can win the following game:

 \mathscr{A} must output two distinct messages $m, m^* \in \mathscr{M}$ and two keys $r, r^* \in \{0, 1\}^n$ such that $m \neq m^*$ and $Commit(m, r) = Commit(m^*, r^*)$.

 $Pr[Commit(m, r) = c = Commit(m^*, r^*) | m \neq m^*] \leq negl(n)$

Binding A commitment scheme is said to be information-theoretically (resp. computationally) **binding** if no infinitely powerful (resp. computationally bounded) adversary \mathscr{A} can win the following game:

such that $m \neq m^*$ and $Commit(m, r) = Commit(m^*, r^*)$.

computational (complexity-based)

 \mathscr{A} must output two distinct messages $m, m^* \in \mathscr{M}$ and two keys $r, r^* \in \{0,1\}^n$

VS

information-theoretic (unconditional)

Hiding A commitment scheme is said to be information-theoretically (resp. computationally) hiding if no infinitely powerful (resp. computationally bounded) adversary can win the following game:

- 1. \mathscr{A} outputs two messages m_0 and m_1 .
- 2. Consider selects a random bit $b \leftarrow \{0,1\}$; picks a random $r \leftarrow \{0,1\}^n$; computes $c = \text{Commit}(m_h, r)$; and returns c to \mathscr{A} .
- 3. \mathscr{A} outputs a bit b^* as a guess for b.

$$b \leftarrow \$\{0,1\}$$

$$r \leftarrow \$\{0,1\}^n$$

$$c = \text{Commit}(m_b, r)$$

Let's Construct a Secure Commitment Scheme Using **A Cryptographic Hash Function**

27

Commitment Schemes: a Simple Construction

wait until everyone else 'commits', and then 'reveal' r

A Hash-Based Commitment Scheme

Commit(m, r) = H(m | | r) =: cOpen(m, r, c) = 1 if c = H(m | | r); otherwise return 0

Binding? Yes! Pr[Commit(m, r) = c = Commit(m, r)]Hiding? Yes! $|Pr[b^* = b] - 1/2| \le negl(n)$ $Pr[b^* = b | m_0, m_1, H(m_b)]$

$$(m^*, r^*) \mid m \neq m^*] \le negl(n)$$

 $Pr[H(m | | r) = H(m^* | | r^*) | m \neq m^*] \leq negl \prec description d$

$$r)] \leq negl < for preimage resistance of H$$

An Insecure Construction

Commit(m, r) = m + r =: cOpen(m, r, c) = 1 if c = m + r; otherwise 0

There are plenty provable secure constructions of commitment schemes... we will see more in Module 3

What Can You Do With Commitment Schemes?

Teaser for the Next Lecture

Blockchain Technology, Symmetric Encryption, Perfect Security

Bonus Assignment 1

Implement an off-chain payment channels using solidity

Deadline: Nov 18th

