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Symmetric Key Cryptography

Problem 1 Block Ciphers

1.1 Provide the definition of a block cipher. (3p)
A Block Cipher is a deterministic, keyed function that is invertible.(1p) Formally, E : K ×M → M , where
K = {0, 1}K is a key space made of binary strings of length K ∈ N, M = {0, 1}n is the block space. (1p).
For every key k ∈ K, the function E(k, ·) : {0, 1}n → {0, 1}n is efficiently computable and admits an efficiently
computable inverse function D(k, ·) : {0, 1}n → {0, 1}n. Correctness ensures that D(k,E(k,m)) = m for every
block m ∈ {0, 1}n.(1p)

1.2 Describe the design principles of a secure block cipher. (4p)
There are four main design principles: 1- Iteration (0.5p), which consists of repeatedly applying a not-so-strong
block cipher, each time with a different key, creating a sequence of rounds (0.5p). This technique is not prov-
ably secure, but heuristics show that it works. 2- Use of Feistel Networks (0.5p), which consists of applying

a cipher function F at every round following the Feistel pattern defined by:

{
Li+1 = Ri

Ri+1 = Li ⊕ F (Ki, Ri)
(0.5p)

3- Confusion (0.5p) is implemented in AES by the S-boxes. Inuitively this design principle works by dividing
the input into sub-blocks, and applying a substitution table within each sub-block. (0.5p) 4- Diffusion (0.5p) is
implemented in AES by the P-boxes. Intuitively it works by applying a permutation that scrambles the input
bits in such a way that the bits of each input sub-block are distributed across all output sub-blocks. (0.5p)

1.3 Let E denote the encryption function of a semantically secure block cipher. Show that
E′(k,m) = lbs(m)||E(k,m) where lsb(m) denotes the least significant bit of m, is not seman-
tically secure. (3p)
In order to show that E′ is not semantically secure it suffices to give two distinct messages m0,m1 ∈ {0, 1}n

that can be used to win the semantic security game with non-negligible probability. (1p) In this case, since E′

leaks the least significant bit of the plaintext, we can choose an m0 with lbs(m0) = 0 and m1 with lbs(m1) = 1.
(1p) Let c denote the ciphertext returned by the semantic security challenger. By construction we observe that
c contains lbs(mb) as its left-most bit, i.e., c[0] = lbs(mb), where b denotes the challenge bit. So by returning
as a guess b′ = c[0] we are guarantee to win the semantic security game with probability 1. (1p)

Problem 2 One Way Functions & Integrity

2.1 For each of the following proposals, state if they are one-way functions or not. Also provide
a motivation for your decision.
(a) f(x, y) = x+ y, where x, y ∈ {0, 1}128 and x, y are interpreted as natural numbers. (2p)
(b) g(x) := x||f(x) where f(·) is a one-way function. (2p)
(c) g(x0||x1) := x0||f(x1) where f(·) is a one-way function. (2p)
(a) is not one way (1p). The reason is that given a number z in the range of f(·) it is easy to find x, y such that
x = f(x, y). An efficient algorithm to do so is to sample a random x ∈ {0, 1}128 and compute y = z − x (1p),
if y /∈ {0, 1}128 then sample another x. (b) is not one way (1p). The reason is that it leaks its input. (1p) (c)
is one way (1p). The reason is that even if it leaks half of its input, to find a pre-image of the second half of
the output would imply the existence of an efficient algorithm that given y = f(x1) returns x′ (possibly equal
to x1) such that f(x′) = y, which contradicts the assumption that f(·) is one way. (1p)

2



2.2 Let f : {0, 1}128 → {0, 1}128 be a one way function. Consider the following proposal of
a message authentication code (MAC) over the keyspace {0, 1}128 and message space {0, 1}128
defined as MAC(k,m) :

t0 ← ${0, 1}n
t1 = f(k ⊕ t0 ⊕m)
return t = (t0, t1)

(a) Describe the verification algorithm for this MAC construction. (2p)
(b) Show that the proposed MAC is insecure by devising an attack that breaks unforgeability
(it suffices to do one authentication query to the MAC oracle). (2p)
(a) The verification algorithm works as follows V er(k,m, t) :

parse t = (t0, t1)

t′1 = f(k ⊕ t0 ⊕m)(1p)
if t′1 == t1 return 1 else return 0.(1p)

(b) Note that the tag reveals the randomness t1 which is used as a one time pad on the message. The attack
works as follows. A queries the MAC oracle on a message m ∈ {0, 1}128 and receives the tag t = (t0, t1). Now
t1 is a valid tag for any input x = key ⊕ (t0 ⊕m). We will use the malleability of the one time pad to ensure
the same t1 for a different message (and randomness). This is done by sampling a random t∗0

R← {0, 1}128 and
setting m∗ = t∗0 ⊕ t0 ⊕m. (1p) The pair (m∗, (t∗0, t1)) is a valid existential forgery against MAC. (1p) Indeed,
V er(k,m∗, t∗) = 1 since t1 = f(k ⊕ t0 ⊕m) = f(k ⊕ t∗0 ⊕m∗).

Public Key Cryptography

Problem 3 Key Exchange

3.1 In the Diffie-Hellman key exchange it is important that the two parties involved in the
protocol agree on a common base value g. Consider you are working modulo the prime number
p = 251. You are asked to choose whether to use g = 3 or g = 6 to perform a secure key
exchange. Is one choice better than the other? Why? (2p)
In the DH key exchange it is important that the base g used by both parties is a generator of the group Z∗

p.
It is easy to check that 3 is not a generator of Z∗

p, indeed 3125 mod 251 = 1 so 3 generates only a subgroup,
but not the whole group. (0.5p) In contrast 6

p−1
2 mod p = −1, which makes 6 a generator of Z∗

p (0.5p) (since
2 is not invertible modulo 250 = Φ(p)). So, yes, g = 6 is a better choice because it provides better security as
it generates the whole group instead of a smaller subgroup. (1p)

3.2 State the two security assumptions needed for the DH key exchange to be secure. (4p)
The two security assumptions are related to the Discrete Logarithm Problem (1p) and the Computational
Diffie-Hellman Problem (1p) and essentially state that these problems are believed to be hard. In detail, the
Discrete Logarithm (DL) assumption states that given an element h ∈ G = ∧g⟩ to find a value x such that
X = gx is computationally infeasible. (1p) The Computational Diffie-Hellman (CDH) assumption states that
given the description of a group G = ∧g⟩ and two elements A = ga, B = gb finding K = gab is computationally
infeasible. (1p)

3.3 Prove that one of the computational problem behind the assumptions for the previous
question reduces to the other (4p)
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The CDH problem reduces to the DL problem (1p), that is CDH ≤ DL. For the proof, it suffices to show that
given access to an efficient DL solver, call this ADL we can efficiently solve a CDH challenge. (1p) In detail,
given the CDH challenge (g,A,B) the reduction can send A to ADL. (1p) Since ADL is able to efficiently com-
pute the discrete logarithm of a given element, ADL will return to the reduction a = dLog(A). Note that now
the reduction has the same knowledge as Alice has, in the textbook DH key exchange, and thus can compute
K as K = Ba (1p), and return this K as its solution to the CDH challenger.

Problem 4 Encryption
4.1 Describe the IND-CCA game, including the winning condition. (5p)
The indistinguishability under chosen ciphertext attack game (0.5p) for a public key encryption scheme (KeyGen,
Enc,Dec) over the message space M is played between a probabilistic polynomial time adversary A and a
challenger C that interact as follows. The challenger runs the key generation algorithm to obtain a key pair
(pk, sk) ← KeyGen(sec.par) and returns pk to A. (1p) Next, the adversary is allowed a first query phase,
where A can interact with the decryption oracle. Next, is the challenge phase, where A submits two mes-
sages m0,m1 ∈ M (of the same length) chosen by the adversary. (1p) The challenger samples a random bit
b← ${0, 1}, and returns to A the ciphertext c← Enc(pk,mb). (1p) Next, A has another query phase with the
decryption oracle where A is allowed to receive decryption of any ciphertext except for the challenge ciphertext
c (created in the previous phase by C). (0.5p) At the end of the game, A outputs a guess b′ ∈ {0, 1} for the bit
b embedded in the challenge. The adversary wins the game if b = b′. (1p)

4.2 Give the definition of an IND-CCA secure encryption scheme. (1p)
A public key encryption scheme (KeyGen, Enc,Dec) is said to be IND-CCA secure if the probability that a
PPT adversary A playing the IND-CCA security game (described in the previous point) wins is negligibly close
to 1/2:

Prob[b = b′] =
1

2
+ negl(sec.par) (1p)

4.3 Recall how ElGamal encryption works, then show that it is not IND-CCA secure. (4p)
The ElGamal encryption scheme works on groups of large prime order q. Let g denote a generator of the group.
The secret key is sk ∈ Zq and the corresponding public key is pk = gsk. To encryption a message m, one first
samples a random value r ← $Zq, the ciphertext is the defined as c = (c0, c1) where c0 = gr and c1 = m(pk)r.
(1p) Decrytpion uses the knoweldge of the secret key to recover a message from a ciphertext c = (c0, c1) using
the following formula: m = c1 · c−sk

0 . (1p) ElGamal encryption is not IND-CCA secure because it is malleable
(homomorphic). A succesfull attack strategy would be to skip the first query phase, then submit m0 ̸= m1 for
any pair of messages in the group. Letc = (c0, c1) denote the challenge ciphertext provided by C. Construct
the ciphertext c′ = (c0, 2 · c1) (1p) and submit c′ to the decryption oracle in the secon query phase. Since
c′ ̸= c the oracle will decrypt c′ and return m′ = 2 ·mb to A. Now dividing m′ by the modular inverse of 2, the
adversary can extract mb compare it against m0,m1 and return the correct guess b′ = b with probability 1. (1p)

Cryptographic Protocols

Problem 5 Commitments

5.1 Prove that no commitment scheme can be simultaneously unconditionally secure hiding
and unconditionally secure binding. (2p)

4



The reasoning proceeds by reduction to absurd. Suppose we have a scheme which is both unconditionally
concealing and binding, and suppose the committing party makes a commitment c ← Commit(m, r) for some
message m and randomness r. The information-theoretically hiding property implies that there must exist
values m∗( ̸= m) and r∗ such that c = Commit(m∗, r∗), otherwise an infinitely powerful receiver could break
the concealing property by finding the unique pair (m, r) that generates the commitment c. (1p) So there must
exist an m∗ s.t. Commit(m∗, r∗) = c = Commit(m, r). The last equality implies that the commitment is not
binding. (1p) So we conclude that if the commitment scheme is information-theoretically hiding, it cannot be
binding for a computationally unbounded sender, which contradicts the statement.

5.2 Consider the following proposal of a commitment function: Commit(m, r) = (gr, hm+r)
where g, h are generators in a suitable prime order group G.
(a) Write the Open algorithm for this commitment. (1p)
(b) Is this scheme unconditionally secure for binding or hiding? Motivate your answer. (1p)
(a) The Open algorithm simply reconstructs the commitment from the given m and r and checks the result
against the previously received value c. In detail, Open(m, r, c) computes c′ = (gm, hm+r), returns 1 if c′ = c,
and 0 otherwise. (1p) (b) The scheme is information theoretically binding (0.5p) since r acts as a one time pad
on m and gr is uniquely determined by r. (0.5p) Note that it is not possible to find another r′ and m′ ̸= m

that generate the same commitment c = (c0, c0) = (gr, hm+r) unless r′ = r mod p which then implies m′ = m

mod p (where p = |G|) by the uniqueness of the discrete logarithm. The scheme is computationally hiding
since m and r are given in the exponents (so a computationally unbounded adversary could efficiently solve the
discrete logarithm problem, recover r from c0 and then m from c1).

5.3 A Pedersen commitment scheme is defined by a set up algorithm that outputs the de-
scription of a group suitable for cryptographic G of prime order q with generators g, h. To
commit to a message m ∈ Zq one computes c = gmhr mod q where r ← $Zq. There are a few
important facts for Pedersen commitments:
(a) The elements g and h are both generators of the whole group. Why does this matter? (1p)
(b) The discrete logarithm of h in base g should be unknown. What goes wrong otherwise?
(describe an attack) (2p)
(c) The commitment is malleable. Show how from a commitment c of a message m you can
derive a commitment c∗ to the message m+ 1 without knowing m and r. (1p)
(d) The commitment is malleable. Show how from a commitment c of a message m you can
derive a commitment c′ to the message 2m without knowing m and r. (1p)
(e) Given the opening of the original commitment c, would you be able to provide an opening
for the c′ from point (d)? How? (1p)
(a) If g (resp. h) is not a generator of the whole group, it means that it generates a subgroup, thus instead of

having q = |G| possible messages (resp. randomnesses) there are only q′ = |⟨g⟩| < q (resp. q′ = |⟨h⟩| < q), which
affects security as it reduces the difficulty of solving the discrete logarithm problem. (1p) (b) If dLogg(h) = x

is known then the binding property no longer holds (1p). For instance given c = gmhr = gm+xr one could
provide alternative openings of c for any chosen a ∈ Zq computed as m′ = m+ ax and r′ = r − a (1p), indeed
gm

′
hr′ = gm+ax+x(r−a) = c. (c) Let c = gmhr for some r, then we can obtain c′ = g · c = gm+1hr. (1p) (d) Let

c = gmhr, we can obtain c∗ = (c)2 = g2mh2r. (1p) (e) Let m, r be the opening of a commitment c, then the
opening for c∗ = c2 is 2m, 2r. (1p)
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Problem 6 Zero Knowledge & Threshold Cryptography

6.1 Consider the following variation of Schnorr’s protocol (where x ∈ Zp denotes the witness
and X = gx ∈ G is part of the public statement):

Prover (x) Verifier (X)
r ← $Z∗

p

a = gr
a−→
e←− e← ${0, 1}t

z = r · e+ x
z−→

(a) Write the verifier’s equation for this protocol. (1p)
(b) Recall the definition of special honest-verifier zero-knowledge and show that this protocol
satisfies it. (3p)
(c) The honest-verifier feature is crucial. Describe a strategy a dishonest verifier could use to
break zero-knowledge if the challenge e is chosen in a malicious way. (1p)
(a) The verifier’s equation is supposed to check that if z is constructed as expected, then it matches a value that
is computed from the prover’s public key (statement). In this case the equation is a small variation of the one in
the Schnorr protocol: gz = ae ·X. (2p) (b) To show that the protocol is special honest-verifier zero-knowledge
we need to show that for X and witness x (such that X = gx), and for every challenge e ∈ {0, 1}t it holds
that {Sim(X, e)} =c {⟨P (X,w), V (X, e)⟩}. (1p) This means that we need to show a simulator that is able to
produce transcripts that have the same distribution as honest transcripts. We follow the standard procedure
to build a Simulator in this setting, that is: we begin by sampling a random value z̃ for the final answer, use
the input challenge e to then derive the first message ã of the simulated transcript without ever using x (which
indeed is not given to Sim), in this way we obtain:

{(ã, e, z̃) | z̃ ← $Zp, ã = grXe} (1p)

while a standard transcript is {(a, e, z) | r ← $Zp, a = gr, z = r · e+ x}. The distributions of the two ensembles
are identical: each conversation occurs exactly with probability 1

p , determined by z̃ and r respectively. (1p) (c)
A malicious verifier could pick e = 0 and learn x = z. (1p) If the verifier was honest, this case would happen
with (negligible) probability 2−t.

6.2 In this problem you will construct a threshold version of the RSA signature scheme. Let
N = p · q denote an RSA modulo, e the public key and d the secret signing key. Let m denote
the message to be signed.
(a) Consider the additive secret sharing scheme where d ∈ ZN is split into 2 shares x1 ← $ZN

and x2 = d − x1 mod N . Describe an algorithm that the two parties, knowing x1 and x2

respectively, can use to compute shares of an RSA signature. Given m and xi, your algorithm
should compute a partial signature σi for i ∈ {1, 2}. (1p)

(b) Describe a way to combine σ1 and σ2 from (a) into a signature σ that can be used in
the standard RSA signature verification procedure. (1p)

(c) Does this approach generalize to a generic t out of n secret sharing scheme? Motivate
your answer (3p)
(a) The standard RSA signature is σ = H(m)d mod N . Each party knows a share of the secret key, and
can thus compute a share of the signature as: σi = H(m)xi mod N . (1p) Note that each signature share
alone cannot be verified by the standard RSA signature because nothing guarantees that x1 · e = 1 mod Φ(N).
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(b) A valid RSA signature (that can be verified against the public key e) can be obtained simply by mul-
tiplying together the two partial signatures (exploiting the homomorphic property of RSA): σ = σ1 · σ2 =

H(m)xi · H(m)x2 = H(m)x1+x2 = H(m)d mod N . (1p) Clearly σ satisfies the verification equation since
σe = H(m)ed = H(m) mod N . (c) Yes(1p), the approach generalizes to any secret sharing scheme defined over
ZN where the reconstruction function f is linear in the shares. (1p) The generic approach is to first run the key
generation of RSA, obtain the secret singing key d. Then use d as input to the Distribute(N,n, t, d) algorithm
to obtain the n shares {xi}ni=1 of the key. Distribute each share to each signing party. The partial signature
generation (run by each party independently) works exactly as in point (a), that is: σi = H(m)xi mod N . To
reconstruct a valid RSA signature for t signature shares σi with i ∈ I ⊆ {1, 2, . . . , n}, |I| = t, one would need to
run Reconstruct′(I, {σi}i∈I) and get σ, where Reconstruct′ works exactly as the Reconstruct algorithm for the
secret sharing scheme, except that addition of shares are replaced with multiplication of partial signatures, and
mutliplications (by known coefficients) are replaced with exponentiations. This is to ensure that Reconstruct

happens correctly ‘in the exponent’. (1p)
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