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Symmetric Key Cryptography
Problem 1 Semantic Security & Perfect Secrecy

1.1 Let (KeyGen,E,D) be a semantically secure cipher, where the messages, ciphertexts and
keys are binary strings, e.g., you can think M = C = K = {0, 1}n, with n ≥ 2. For each of the
following proposals, state if they are semantically secure or not. Also provide a motivation for
your decision.
(a) E′(k,m) = E(k,m)⊕ 1, where 1 denotes the string with all ones. (2p)
(b) E′(k,m) = E(k,m)||RB(m), where RB(m) gives back a random bit of the input m. (2p)
(c) E′(k,m) = E(k,m)||RB(k), where RB(k) gives back a random bit of the input k. (2p)
(a) Yes, (1p) the encryption scheme is semantically secure. The ciphertexts of E′ are simply the ciphertexts
of E flipped. Thus, it is easy to see that any attack against E′ can be turn into an attack against E (which
is semantically secure by assumption). (1p) (b) No, (1p) the encryption scheme is not semantically secure.
The adversary could use the following strategy to win the semantic security game. Choose m0 = 0 (the all-0
message) and m1 = 1 (the all-1 message). Return RB(m) as b′, the guess for the b chosen by the adversary
to produce the challenge ciphertext. (1p) (c) Yes, (1p) the encryption scheme is semantically secure. Although
E′ is leaking one bit of the key, this does not impact semantic security given that the key is longer than 1 bit
(n ≥ 2). Indeed a randomly chosen bit from a randomly chosen string (the key), will be completely independent
from any pair of messages submitted by the adversary and thus gives no noticeable advantage (better than
random guessing) in determining whether the challenge ciphertext returned is an encryption of m0 or m1. (1p)

1.2 Prove that any symmetric encryption scheme that is perfectly secure must have the key
space at least as large as the message space. In other words, perfect security implies |K| ≥ |M|.
(Hint, this is Shannon’s theorem and holds for the One Time Pad.) (4p)
In order to prove the statement, assume E is perfectly secure. (1p) This means that for every c ∈ C we have
that Prob[E(k,m0) = c|k ← $K] = Prob[E(k,m1) = c|k ← $K] > 0. (1p) Since E(k, ·) : M → C is an in-
jective function (otherwise the inverse D(k, ·) is not well-defined), different messages must be encrypted using
different keys to obtain the same ciphertext c. Thus for each and every m ∈ M there exists a key km ∈ K
such that E(km,m) = c. (1p) This implies that there must be at least as many keys as there are messages,
i.e., |K| ≥ |M|. (1p) Note that it is not a problem if E(k,m) = c = E(k′,m) for k ̸= k′, as this does not
contradict correctness. Correctness only implies that for a fixed key, each ciphertext has a unique decryption,
i.e., E(k,m) = c = E(k,m′) for m ̸= m′ cannot happen.

Problem 2 Data Integrity

2.1 Let f : {0, 1}128 → {0, 1}128 be a one way function. Consider the following proposal of
a message authentication code (MAC) over the keyspace {0, 1}128 and message space {0, 1}128
defined as MAC(k,m) :

t0 ← ${0, 1}n
t1 = f(k ⊕ t0 ⊕m)
return t = (t0, t1)

(a) Describe the verification algorithm for this MAC construction. (2p)
(b) Show that the proposed MAC is insecure by devising an attack that breaks unforgeability
(it suffices to do one authentication query to the MAC oracle). (2p)
(a) The verification algorithm works as follows V er(k,m, t) :
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parse t = (t0, t1)

t′1 = f(k ⊕ t0 ⊕m) (1p)
if t′1 == t1 return 1 else return 0. (1p)

(b) Note that the tag reveals the randomness t1 which is used as a one time pad on the message. The attack
works as follows. A queries the MAC oracle on a message m ∈ {0, 1}128 and receives the tag t = (t0, t1). Now
t1 is a valid tag for any input x = key ⊕ (t0 ⊕m). We will use the malleability of the one time pad to ensure
the same t1 for a different message (and randomness). This is done by sampling a random t∗0 ← ${0, 1}128 and
setting m∗ = t∗0 ⊕ t0 ⊕m. (1p) The pair (m∗, (t∗0, t1)) is a valid existential forgery against MAC. (1p) Indeed,
V er(k,m∗, t∗) = 1 since t1 = f(k ⊕ t0 ⊕m) = f(k ⊕ t∗0 ⊕m∗).

2.2 The security notion for message authentication codes is unforgeability under chosen mes-
sage attack. Consider the security game defined below, where QS, QV are positive integers
polynomial in the security parameter, and K (resp. M) is the set of keys (resp. messages).

Challenger C Attacker A
k ← $K Q = ∅

(MAC queries) mi←− for i in {1, . . . , QS} choose mi ∈M
MAC(k,mi) = ti

ti−→ store Q = Q∪ {(mi, ti)}

(verification queries) (mj ,tj)←− for j in {1, . . . , QV } choose (mj, tj) /∈ Q
Ver(k,mj, tj) = dj

dj−→

We say that A wins the above game if at least one verification query (m∗
j , t

∗
j) /∈ Q is answered

with dj = 1.

(a) Referring to the above game, give the definition of a secure MAC. (2p)
(b) Show that verification queries do not help. (Hint: Note that the game without verification
queries can be obtained setting QV = 1, so the single message-tag pair (m∗, t∗) submitted is
the output forgery attempt, rather than an adaptive verification query. Show that for every A
that wins the unforgeability game with verification queries with probability Prob[A wins], you
can construct a new adversary B that wins the unforgeability game without verification queries
(QV = 1) with probability Prob[B wins] = Prob[A wins]/QV .) (4p)
(a) A message authentication code is said to be secure if for any efficient (probabilistic, polynomial time) ad-
versary A (1p) the probability that A wins the above game is negligible (1p) in the security parameter. (b) The
reduction B plays the role of the challenger to A (which entails simulating answers to verification queries) and,
at the same time, it plays the role of adversary in the game with QV = 1. The reduction relies all communication
regarding MAC queries: any mi submitted by A is sent to B’s MAC oracle, and all responses are forwarded
to A. (1p) Upon receiving a verification query (mj , tj), B stores the pair in a list and returns dj = 0 to A.
(1p) At the end of the game, B randomly selects one of A’s verification queries and submits it as its output
forgery attempt (m∗, t∗). The selected message-tag pair is a valid forgery with probability Prob[A wins]/QV

(1p), because in the game with verification queries A submits all its forgery attempts as verification queries.
(1p) Alternatively, B can make its guess î (for the index of the verification query to forward as its own forgery
attempt) at the beginning of the game, before any MAC query is preformed. In this case the game terminates
with B forwarding A’s î-th verification query.

Public Key Cryptography
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Problem 3 Encryption

3.1 Consider the RSA encryption scheme.
(a) Describe in detail the three algorithms that define the cryptosystem. (4p)
(b) Define correctness for a public key encryption scheme and show that RSA is correct. (2p)
(c) Show that if an adversary A finds out Φ(N), then A can easily factorize N . (2p)
(a) The RSA encryption scheme is defined by three PPT algorithms (KeyGen,Enc,Dec). In detail, KeyGen

takes in input the security parameter that determines the desired bit length of the prime numbers involved. It
picks two distinct primes p, q. It computes the RSA modulo N = p·q, (0.5p) and e, d such that e·d = 1modΦ(N),
(0.5p) where Φ(N) denotes Euler’s totient function. The secret key is sk = (N, d) (0.5p) while the public key is
pk = (N, e). (0.5p) The encryption algorithm is Enc(pk,m), and takes in input the public key and a message
m ∈ ZN and returns the ciphertext c = me mod N . (1p) The decryption algorithm is Dec(sk, c), and takes
in input the secret key and a ciphertext c ∈ ZN , and returns the plaintext m = cd mod N . (1p) (b) To show
correctness, we need to argue that for every message and key pair it holds that Dec(sk,Enc(pk,m)) = m,
i.e., the decryption returns the initial plaintext. (1p) More formally, for all key pairs (pk, sk) ← KeyGen(n)

and for all messages m ∈ ZN it holds that Prob[Dec(sk, c) = m|c = Enc(pk,m)] = 1. RSA is correct
since for every N, p, q, e, d constructed as described in point (a) it holds that Enc(pk,m) = c = me mod N

and Dec(sk, c) = cd mod N = (me)d mod N = me·d mod Φ(N) mod N = m mod N . (1p) (c) Recall that:
Φ(N) = (p− 1)(q − 1) = pq − p− q + 1 = N − p− q + 1. (1p) So knowing Φ(N) it is computationally easy to
learn also p + q = N + 1 − Φ(N). But if you know both p · q = N and p + q = a it is easy to compute p and
q: using q = N/p, you know p + N/p = a, which gives the ordinary second-degree equation p2 − ap + N = 0,
which is efficiently solvable in p. (1p)

3.2 Alice and Bob use the RSA cryptosystem with the same modulus, but different encryption
exponents eA and eB such that gcd(eA, eB) = 1. An eavesdropping adversary gets hold of one
ciphertexts for Alice cA and one ciphertext for Bob cB. In addition, A knows that both cipher-
texts encrypt the same message m. Show how A can retrieve m from cA, cB, eA, eB, N . (2p)
The general idea here is that the adversary should use the extended Euclid’s algorithm (1p) on eA and eB to get
(s, t) such that sea + teb = 1 since eA and eB are relative prime by assumption. Next, the adversary computes
csA · ctB which in ZN equals to csA · ctB = mseA+teb = m mod N (1p)

Problem 4 Digital Signatures

4.1 Provide a brief definition of blind signatures. (3p)
A blind signature scheme is a signature scheme (KeyGen,Sign,Ver) where the signing algorithm algorithms
Sign is replaced by an interactive protocol run between a signer/issuer (S) and a receiver (R). (1p) The protocol
starts with R who has as input a message m, and S who has as input a signing secret key sk. (1p) At the end
of the interaction R obtains a signature σ on m, (1p) and S learns nothing about m or σ.

4.2 In Chaum’s untraceable eCash system, to implement secure eCoin withdrawal Alice sends a
message B = reH(x) mod N to the Bank. This is the beginning of a blind signature procedure
based on the RSA-FDH (full domain hash) signature scheme.
(a) Explain what e, r, H, x are. (2p)
(b) Let S̄ = Bd mod N be the Bank’s reply to Alice’s message. First, show how Alice can
unblind S̄ and obtain the signature S ∈ ZN . Then show that S verifies. (2p)
(a) Since we are using RSA-FDH, e is the RSA public exponent (0.5p); r ← $Z∗

N is some randomness (0.5p)
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used to mask (blind) what should be signed by the Bank; H is a full-domain hash function (0.5p); and x is
the coin (string or message) (0.5p) that should be blindly signed by the Bank. (b) In order to obtain a valid
signature from the blinded value S̄ Alice simply needs to remove the masking factor r as follows: S = r−1 · S̄
mod N . (1p) In order to show that S verifies, we need to show that it satisfies the RSA-FDH verification
equation: Se mod N =? H(x), which clearly holds since (S)e = (r−1 · S̄)e = (r−1 · (Bd))e(r−1 · (reH(x))d)e =

(r−1 · re·dH(x)d)e = H(x) (1p), where all equations hold modulo N , and e · d = 1 mod Φ(N) because we are
working in an RSA modulo.

4.3 Consider the following variant of the Elgamal signature scheme. The KeyGen algorithm
outputs the description of a multiplicative group G of order p generated by g (for an oppor-
tune large prime p), the description of a full domain hash function H : {0, 1}∗ → G, a secret
signing key sk ← $Zp \ {0} and the corresponding public verification key pk = h = gsk. The
Sign algorithm takes in input the secret key sk and a message m, and it returns the signature
(s1, s2) ∈ Z∗

p × Zp such that hs1gH(m) = gs2 . This latter equation is used for verification, we do
not specify how the signing procedure works.
(a) Show how to extract the secret signing key from any given a message-signature pair, i.e.,
given m and (s1, s2) that satisfy the verification equation hs1gH(m) = gs2 , give a procedure to
compute sk. (2p)
(b) Is this scheme unforgeable? Briefly explain why. (1p)
(a) Given m and a valid signature (s1, s2) it is possible to compute H(m) and verify that hs1gH(m) = gs2 holds.
Substituting h with gsk (where sk is the sought after unknown value) the equation reads: gsk·s1+H(m) = gs2 .
(1p) Taking the equality in the exponents (the discrete logarithm is unique mod p) reveals the linear equation:
sk · s1 +H(m) = s2 mod p from which it is possible to extract sk as sk = (s2 − H(m))(s1)

−1 mod p (1p)
computing the modular inverse of s1. So this is not a secure signature scheme. (b) No, (0.5p) the signature
scheme in not unforgeable since every signature reveals the secret signing key as shown in the previous point.
(0.5p) A successful attack strategy is to query for the signature of any message m, extract the signing key as
shown above, select new message m∗ ̸= m and use the recovered sk to run the Sign algorithm as the honest
signer would to obtain a valid signature (forgery).

Cryptographic Protocols

Problem 5 Secret Sharing & Threshold Cryptography

5.1 Give the definition of a secret sharing scheme. (3p)
An (n, t)-secret sharing scheme is a method by which a dealer distributes shares of a secret value s to a set of
n ≥ 2 parties in such a way that simultaneously achieves the following three properties: 1) t-correctness: any
set of t parties can jointly reconstruct s. (1p) 2) privacy: no single party alone learns anything about s. (1p)
3) (t− 1)-security: any subset of less than t parties cannot compute s. (1p)

5.2 Explain why t−1 parties cannot learn anything about the secret in the (n, t) Shamir secret
sharing scheme. Does this property rely on any computational assumption? (2p)
Shamir secret sharing scheme relies on the fact that the polynomial chosen by the dealer has uniformly random
coefficients (a part from the constant term). In detail, given any set of (t− 1) shares {(xi, yi)}ti=1, there exists
a degree t − 1 polynomial f such that f(xi) = yi for all i and f(0) = s for all possible values of s (1p) in Zq.
This is not a computational hardness assumption: Shamir secret sharing scheme is unconditionally secure. (1p)
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5.3 You are given a group G of order a large prime number p, a generator g of G and key pairs
are of the form (sk,pk) = (x, gx) for x ∈ Zp. Alice has decided to use Shamir secret sharing
scheme to distribute her secret key skA ∈ Zp across n ≥ 3 devices in such a way that any
subset of t = 2 devices can reconstruct skA, but no subset of less than t devices is able to do
so. Let ai denote the share held by device i. Bob has initiated a Diffie-Hellman Key Exchange
with Alice by sending his public key B ∈ G. Alice needs to respond, but she is in a situation
where her available devices can only communicate with Bob but not with one another. So she
responds to Bob with two messages, A2 = ga2 and A3 = ga3 , and an explanation of her situation.

(a) Show how Bob can efficiently compute the Diffie-Hellman shared key K = gskA·skB . (Hint:
no concrete computations are needed, but you should describe the procedure) (3p)
(b) Assume n = 5, and Alice knows that exactly one of her devices is corrupted in the sense
that it is using an incorrect share value. Can she identify the malicious device? Why? (2p)
(c) What could Alice use, in addition to Shamir’s scheme, to efficiently identify when wrong
shares are used? (1p)
(a) Given A1, A2, the fact that Alice is using Shamir secret sharing scheme with threshold t = 2 and the identi-
ties of the devices are 2 and 3, Bob can do the following. First, he can compute the Lagrange coefficients δ2,32 and
δ2,33 . (1p) Next, he can reconstruct Alice’s public key by doing interpolation in the exponent: A = A

δ2,32
2 ·Aδ2,33

3 =
gδ

2,3
2 ·a2+δ2,33 ·a3 = gskA . (1p) Finally, Bob can calculate the standard DH key as K = AskB . (1p) (b) Yes, (1p)

Alice can identify the faulty device. One strategy is to ask all possible subsets of t = 2 devices to reconstruct
the secret. There are

(
n
t

)
=

(
5
2

)
= 10. Since there is exactly one malicious party, there are

(
n−1
t

)
=

(
4
2

)
= 6

coalitions that reconstruct the same (and the correct) value skA. On the other hand, the are
(
n−1
t−1

)
=

(
4
1

)
= 4

coalitions that reconstruct a different value sk∗
A. Alice can identify the faulty device as the only one party that

takes part in all of the 4 incorrect reconstructions. (1p) (c) Alice could use a verifiable secret sharing scheme
(1p), for instance combining Shamir’s secret sharing with Pedersen commitments to each share and the secret
key.

Problem 6 Sigma Protocols

6.1 Consider Schnorr’s protocol described below (where x ∈ Zp denotes the witness and
X = gx ∈ G is part of the public statement):

Prover (x) Verifier (X)
r ← $Z∗

p

a = gr
a−→
e←− e← $Zp

z = r + e · x z−→

(a) Give the definition of special honest-verifier zero-knowledge. (2p)
(b) Imagine you get a hold of two transcripts (a, e, z) and (a′, e′, z′) with a′ = a2. Describe a
method you can use to extract the witness x. Do you need to make any assumptions? (3p)
(a) Special honest-verifier zero-knowledge states that for any given statement X and witness x satisfying the rela-
tion R (in this case: X = gx), and for every challenge e there exists an efficient simulator Sim (1p) that outputs
transcripts that are indistinguishable from honest ones. (1p) Formally, {Sim(X, e)} =c {⟨P (X,w), V (X, e)⟩}.
(b) This is a small adaptation of the standard extraction technique. By construction we know that there exists
and r ∈ Z∗

p such that (a = gr, e, z = r + e · x) and (a′ = (a)2 = g2r, e′, z′ = 2r + e′ · x) where r and x are
unknowns. Taking the system of equations identified by z, z′ ∈ Zp we get:{

z = r + e · x mod p

z′ = 2r + e′ · x mod p
(1p) →

{
r = z − e · x mod p

z − z′ = r − 2r + (e− e′) · x mod p
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Substituting r from the first equation into the second one we get: z − z′ = −(z − e · x) + (e − e′) · x mod p

collecting x to the left hand side yields x = (2z − z′) · (2e − e′)−1 mod p (1p). To perform this last step we
need to assume that (2e− e′) is invertible modulo p. (1p)

6.2 In Sigma protocols, why removing interaction between prover and verifier makes the proof
verifiable by multiple verifiers? What technique is used to achieve this in a secure way (give
the name, how and why it works)? (4p)
For the security of Sigma protocol it is fundamental that the prover cannot predict the challenge e that comes
from the verifier. Otherwise, if e is known (before the initial message a is set), the special honest verifier zero
knowledge property guarantees that a simulator can produce an accepting transcript, i.e., it is able to produce
a proof that looks like an honest one but was created without the knowledge of the secret witness. (1p) This
prevents interactive proofs from being convincing (valid proofs) for any party other than the verifier who took
part in the interaction. A valid proof obtained without interaction thus can be used to convince any verifier,
as there is no specific verifier that interacts with the prover. The way this is achieved is via the so-called
Fiat-Shamir Transform (or Heuristic) (1p), which works by computing the challenge e as the hash of the initial
message a, hence e = H(a). (1p) Note that while e is well-determined by a, the pre-image resistant property of
the hash function H (1p) prevents a malicious prover from being able to efficiently predict an a that generates
an opportune e that allows cheating.
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